Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-12T23:15:05.814Z Has data issue: false hasContentIssue false

The impact of African aridity on the isotopic signature of Atlantic deep waters across the Middle Pleistocene Transition

Published online by Cambridge University Press:  20 January 2017

Bruno Malaizé*
Affiliation:
UMR CNRS 5805 EPOC, Universit" Bordeaux I, 33405 Talence, France
Elsa Jullien
Affiliation:
UMR CNRS 5805 EPOC, Universit" Bordeaux I, 33405 Talence, France
Amandine Tisserand
Affiliation:
UMR CNRS 5805 EPOC, Universit" Bordeaux I, 33405 Talence, France Department of Earth sciences, University of Bergen, Realfagb, Allègt. 41, Bergen, Bjerknes Centre for Climate Research, BCCR, Allègaten 55, 5007 Bergen, Norway
Charlotte Skonieczny
Affiliation:
FRE CNRS 3298 GEOSYSTEMES, Universit" de Lille I, 59655 Villeneuve d'Ascq, France
E. Francis Grousset
Affiliation:
UMR CNRS 5805 EPOC, Universit" Bordeaux I, 33405 Talence, France
Fr"d"rique Eynaud
Affiliation:
UMR CNRS 5805 EPOC, Universit" Bordeaux I, 33405 Talence, France
Catherine Kissel
Affiliation:
Laboratoire des Sciences du Climat et de l'Environnement/IPSL, CEA/CNRS/UVSQ, Avenue de la Terrasse, Bat 12, 91198 Gif-sur-Yvette Cedex, France
J"r"me Bonnin
Affiliation:
UMR CNRS 5805 EPOC, Universit" Bordeaux I, 33405 Talence, France
Svenja Karstens
Affiliation:
Department of Earth sciences, University of Bergen, Realfagb, Allègt. 41, Bergen, Bjerknes Centre for Climate Research, BCCR, Allègaten 55, 5007 Bergen, Norway
Philippe Martinez
Affiliation:
UMR CNRS 5805 EPOC, Universit" Bordeaux I, 33405 Talence, France
Aloys Bory
Affiliation:
FRE CNRS 3298 GEOSYSTEMES, Universit" de Lille I, 59655 Villeneuve d'Ascq, France
Vivianne Bout-Roumazeilles
Affiliation:
FRE CNRS 3298 GEOSYSTEMES, Universit" de Lille I, 59655 Villeneuve d'Ascq, France
Thibaut Caley
Affiliation:
UMR CNRS 5805 EPOC, Universit" Bordeaux I, 33405 Talence, France
Xavier Crosta
Affiliation:
UMR CNRS 5805 EPOC, Universit" Bordeaux I, 33405 Talence, France
Karine Charlier
Affiliation:
UMR CNRS 5805 EPOC, Universit" Bordeaux I, 33405 Talence, France
Linda Rossignol
Affiliation:
UMR CNRS 5805 EPOC, Universit" Bordeaux I, 33405 Talence, France
Jos"-Abel Flores
Affiliation:
Departamento de Geología, Universidad de Salamanca, 37008, Salamanca, Spain
Ralph Schneider
Affiliation:
Institut fuer Geowissenschaften, Christian-Albrechts-Universitaet, 10/24118 Kiel, Germany
*
*Corresponding author at: University Bordeaux1, UMR 5805 EPOC, France. Fax: + 33 5 56 84 08 48. E-mail address:[email protected] (B. Malaizé).

Abstract

A high resolution analysis of benthic foraminifera as well as of aeolian terrigenous proxies extracted from a 37 m-long marine core located off the Mauritanian margin spanning the last ~ 1.2 Ma, documents the possible link between major continental environmental changes with a shift in the isotopic signature of deep waters around 1.0–0.9 Ma, within the so-called Mid-Pleistocene Transition (MPT) time period. The increase in the oxygen isotopic composition of deep waters, as seen through the benthic foraminifera δ18O values, is consistent with the growth of larger ice sheets known to have occurred during this transition. Deep-water mass δ13C changes, also estimated from benthic foraminifera, show a strong depletion for the same time interval. This drastic change in δ13C values is concomitant with a worldwide 0.3‰ decrease observed in the major deep oceanic waters for the MPT time period. The phase relationship between aeolian terrigeneous signal increase and this δ13C decrease in our record, as well as in other paleorecords, supports the hypothesis of a global aridification amongst others processes to explain the deep-water masses isotopic signature changes during the MPT. In any case, the isotopic shifts imply major changes in the end-member δ18O and δ13C values of deep waters.

Type
Original Articles
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bertrand, P., Shimmield, G., Martinez, P., Grousset, F., Jorissen, F., Paterne, M., Pujol, C., Bouloubassi, I., Buat-Menard, P., Peypouquet, J.-P., Beaufort, L., Sicre, M.-A., Lallier-Verges, E., Ternois, Y., and other participants of the Sedorqua Program(1996). The glacial ocean productivity hypothesis: the importance of regional temporal and spatial studies. Marine Geology 130, 19.CrossRefGoogle Scholar
Bout-Roumazeilles, V., Cortijo, E., Labeyrie, L., Debrabant, P., (1999). Clay mineral evidence of nepheloid layer contribution to the Heinrich layers in the Northwest Atlantic. Palaeogeography, Palaeoclimatology, Palaeoecology 146, 211228.Google Scholar
Bout-Roumazeilles, V., Nebout, N.C., Peyron, O., Cortijo, E., Landais, A., Masson-Delmotte, V., (2007). Connection between South Mediterranean climate and North African atmospheric circulation during the last 50,000 yr BP North Atlantic cold events. Quaternary Science Reviews 26, 31973215.CrossRefGoogle Scholar
Broecker, W.S., Peng, T.H., (1982). Tracers in the Sea. Lamont-Doherty Earth Obs, Palisades, NY. 690 pp.Google Scholar
Clark, P.U., Archer, D., Pollard, D., Blum, J.D., Rial, J.A., Brovkin, V., Mix, A., Pisias, N.G., Roy, M., (2006). The middle Pleistocene transition: characteristics, mechanisms, and implications for long-term changes in atmospheric pCO2 . Quaternary Science Reviews 25, 31503184.Google Scholar
Curry, W.B., Oppo, D.W., (2005). Glacial water mass geometry and the distribution of δ 13C of Σ CO2 in the Western Atlantic Ocean. Paleoceanography 20, PA1017 http://dx.doi.org/10.1029/2004PA001021 Google Scholar
Curry, W.B., Duplessy, J.-C., Labeyrie, L.D., Shakleton, N., (1988). Changes in the distribution of δ 13C of deep water Σ CO2 between the last glaciation and the Holocene. Paleoceanography 3, 3, 317341.CrossRefGoogle Scholar
deGaridel-Thoron, T., Rosenthal, Y., Bassinot, F., Beaufort, L., (2005). Stable sea surface temperatures in the Western Pacific warm pool over the last 1.75 million years. Nature 433, 294298.Google Scholar
deMenocal, P.B., (1995). Plio-Pleistocene African climate. Science 270, 5359.CrossRefGoogle ScholarPubMed
deMenocal, P.B., (2004). African climate change and faunal evolution during the Pliocene–Pleistocene. Earth and Planetary Science Letters 220, 324.Google Scholar
deMenocal, P.B., Ortiz, J., Guilderson, T., Adkins, J., Sarnthein, M., Baker, L., Yarusinsky, M., (2000). Abrupt onset and termination of the African Humid Period: rapid climate responses to gradual insolation forcing. Quaternary Science Reviews 17, 395409.Google Scholar
Duplessy, J.-C., Shackleton, N., (1985). Response of global deep-water circulation to Earth's climatic change 135,000–107,000 years ago. Nature 316, 6028, 500507.Google Scholar
Duplessy, J.-C., Moyes, J., Pujol, C., (1980). Deep water formation in the North Atlantic Ocean during the last ice age. Nature 286, 479481.Google Scholar
Duplessy, J.-C., Shackleton, N.J., Matthews, R.K., Prell, W., Ruddiman, W.F., Caralp, M., Hendy, C.H., (1984). 13C record of benthic foraminifera in the last interglacial ocean : Implication for the carbon cycle and the global deep water circulation. Quaternary Research 21, 225243.CrossRefGoogle Scholar
Duplessy, J.-C., Shackleton, N.J., Fairbanks, R.G., Labeyrie, L., Oppo, D., Kallel, N., (1988). Deepwater source variations during the last climatic cycle and their impact on the global deepwater circulation. Paleoceanography 3, 3, 343360.Google Scholar
Dupont, L., Donner, B., Schneider, R., Wefer, G., (2001). Mid-Pleistocene environmental change in tropical Africa began as early as 1.05 Ma. Geology 29, 3, 195198.Google Scholar
Epica community members, . (2004). Eight glacial cycles from an Antarctic ice core. Nature 429, 623628.Google Scholar
Flower, B.P., Oppo, D.W., McManus, J.F., Venz, K.A., Hodell, D.A., Cullen, J.L., (2000). North Atlantic intermediate to deep water circulation and chemical stratification during the past 1 Myr. Paleoceanography 15, 4, 388403.Google Scholar
Hoogakker, B.A., Rohling, E.J., Palmer, M.R., Tyrrell, T., Rothwell, R.G., (2006). Underlying causes for long-term global ocean δ 13C fluctuations over the last 1.20 Myr. Earth and Planetary Science Letters 248, 1529.Google Scholar
Horng, C.S., Lee, M.Y., Pälike, H., Wei, K.Y., Liang, W.T., Iizuka, Y., Torii, M., (2002). Astronomically calibrated ages for geomagnetic reversals within the Matuyama chron. Earth Planets Space 54, 679690.Google Scholar
Huelsemann, J., (1966). On the routine analysis of carbonates in unconsolidated sediments. Journal of Sedimentary Petrology 36, 2, 622625.Google Scholar
Itambi, A.C., von Dobeneck, T., Mulitza, S., Bickert, T., Heslop, D., (2009). Millennial-scale northwest African droughts related to Heinrich events and Dansgaard-Oeschger cycles: Evidence in marine sediments from offshore Senegal. Paleoceanography 24, PA1205 http://dx.doi.org/10.1029/2007PA001570Google Scholar
Jullien, E., Grousset, E.F., Malaizé, B., Duprat, J., Sanchez-Goni, M.F., Eynaud, F., Charlier, K., Schneider, R., Bory, A., Bout, V., Flores, J., (2007). Low latitude ‘dusty events’ vs high latitude ‘Icy Heinrich events’?. Research Quarterly 68, 3, 379386. http://dx.doi.org/10.1016/j.yqres.2007.07.007Google Scholar
Kageyama, M., Mignot, J., Swingedouw, D., Marzin, C., Alkama, R., Marti, O., (2009). Glacial climate sensitivity to different states of the Atlantic Meridional Overturning Circulation : results from the IPSL model. Climate of the Past 5, 551570.Google Scholar
Kirschvink, J., (1980). The least-squares line and plane and the analysis of paleomagnetic data. Geophysical Journal of the Royal Astronomical Society 62, 699718.CrossRefGoogle Scholar
Kroopnick, P.M., (1985). The distribution of δ 13C of Σ CO2 in the world oceans. Deep-Sea Research Part A 32, 5784.Google Scholar
Lisiecki, L.E., Raymo, M.E., (2005). A Plio-Pleistocene stack of 57 globally distributed benthic δ 18O records. Paleoceanography 20, PA1003 http://dx.doi.org/10.1029/2004PA001071Google Scholar
Loubere, P., (1991). Deep-sea benthic foraminiferal assemblage response to a surface ocean productivity gradient: a test. Paleoceanography 6, 2, 193204.Google Scholar
Lutze, G.F., Coulbourn, W.T., (1984). Recent benthic foraminifera from the continental margin of northwest Africa: community structure and distribution. Marine Micropaleontology 8, 361401.Google Scholar
Mackensen, A., Bickert, T., (1999). Stable carbon isotopes in benthic foraminifera: proxies for deep and bottom water circulation and new production. Fisher, G., Wefer, G., Use of Proxies in Paleoceanography: Examples from the South Atlantic Ocean. Springer-Verlag, Berlin Heidelberg. 229254.Google Scholar
Marlow, J.R., Lange, C.B., Wefer, G., Rosell-Mele, A., (2000). Upwelling intensification as part of the Pliocene–Pleistocene climate transition. Science 290, 22882291.Google Scholar
Martinez, P., Bertrand, P., Bouloubassi, I., Bareille, G., Shimmield, G., Vautravers, B., Grousset, F., Guichard, S., Ternois, Y., Sicre, M.-A., (1996). An integrated view of inorganic and organic biogeochemical indicators of palaeoproductivity changes in a coastal upwelling area. Organic Geochemistry 24, 4, 411420.Google Scholar
Maslin, M., Thomas, E., (2003). Balancing the deglacial global carbon budget: the hydrate factor. Quaternary Science Reviews 17291736.CrossRefGoogle Scholar
Matsuzaki, K.M.R., Eynaud, F., Malaizé, B., Grousset, F.E., Tisserand, A., Rossignol, L., Charlier, K., Jullien, E. (2011). Paleoceanography of the Mauritanian margin during the last two climatic cycles: from planktonic foraminifera to African climate dynamic. Marine Micropaleontology 79, 67"79. doi:10.1016/j.marmicro.2011.01.004.Google Scholar
Mazaud, A., (2005). User-friendly software for vector analysis of the magnetization of long sediment cores. Geochemistry Geophysics Geosystems 6, http://dx.doi.org/10.1029/2005GC001036Google Scholar
Mulitza, S., Prange, M., Stuut, J.-B., Zabel, M., vonDobeneck, T., Itambi, A., Nizou, J., Schulz, M., Wefer, G., (2008). Sahel megadroughts triggered by glacial slowdowns of Atlantic meridional overturning. Paleoceanography 23, PA4206 http://dx.doi.org/10.1029/2008PA001637Google Scholar
Muller, G., Gatsner, M., (1971). Chemical analysis. Neues Jahrbuch für Mineralogie Monatshefte 10, 466469.Google Scholar
Oppo, D.W., Lehman, S.J., (1993). Mid-depth circulation of the sub-polar North Atlantic during the Last Glacial Maximum. Science 259, 11481152.Google Scholar
Paillard, D., Labeyrie, L., Yiou, P., (1996). Macintosh program makes time-series analysis easy. EOS Transactions, Americain Geophysical Union 77, 39, 379.Google Scholar
Petschick, R., (2000). MacDiff 4.2 Manual. MacDiff, (online). Available from:http://www.geologie.uni-frankfurt.de/Staff/Homepages/Petschick/RainerE.html(Revised 2001-05-17).Google Scholar
Ravelo, A.C., Andreasen, D.H., Lyle, M., Lyle, A.O., Wara, M., (2004). Regional climate shifts caused by gradual global cooling in the Pliocene epoch. Nature 429, 263267.Google Scholar
Raymo, M.E., Oppo, D.W., Curry, W., (1997). The mid-Pleistocene climate transition: a deep sea carbon isotopic perspective. Paleoceanography 12, 4, 546559.Google Scholar
Raymo, M.E., Oppo, D.W., Flower, B.P., Hodell, D.A., McManus, J.F., Venz, K.A., Kleiven, K.F., McIntyre, K., (2004). Stability of North Atlantic water masses in face of pronounced climate variability during the Pleistocene. Paleoceanography 19, PA2008 http://dx.doi.org/10.1029/2003PA000921Google Scholar
Rea, D.K., (1994). The paleoclimatic record provided by eolian deposition in the deep sea: the geologic history of wind. Reviews of Geophysics 32, 159195.Google Scholar
Richter, T.O., van der Gaast, S., Koster, B., Vaars, A., Gieles, R., de Stigter, H.C., de Haas, H., van Weering, T.C.E., (2006). The Avaatech XRF Core Scanner: technical description and applications to NE Atlantic sediments. Rothwell, G., New Techniques in Sediment Core Analysis. Geol. Soc. London Spec. Publ. 267, 3950.Google Scholar
Sarnthein, M., Winn, K., Jung, S.J.A., Duplessy, J.-C., Labeyrie, L., Erlenkeuser, H., Ganssen, G., (1994). Changes in east Atlantic deepwater circulation over the last 30,000 years: eight time slice reconstructions. Paleoceanography 9, 2, 209267.CrossRefGoogle Scholar
Schefuß, E., Schouten, S., Jansen, F., Damsté, J.S., (2003). African vegetation controlled by tropical sea surface temperatures in the mid-Pleistocene period. Nature 422, 418421.Google Scholar
Schmiedl, G., Mackensen, A., (1997). Late quaternary paleoproductivity and deep water circulation in the seastern South Atlantic Ocean: evidence from benthic foraminifera. Paleogeography, Paleoclimatology, Paleoecology 130, 4380.Google Scholar
Shackleton, N.J., Opdyke, N.D., (1973). Oxygen isotope and palaeomagnetic stratigraphy of equatorial Pacific core V28-238: oxygen isotope temperatues and ice volumes on a 100 kyrs and 1000 kyrs scale. Journal of Quaternary Research 3, 1, 3954.Google Scholar
Shackleton, N.J., Berger, A., Peltier, W.R., (1990). An alternative astronomical calibration of the lower Pleistocene timescale based on ODP Site 677. Transactions of the Royal Society Edinburgh: Earth Sciences 81, 251261.Google Scholar
Shackleton, N., Hall, M., Vincent, E., (2000). Phase relationship between millennial-scale events 64,000–24,000 years ago. Paleoceanography 15, 6, 565569.Google Scholar
Singer, B.S., Brown, L.L., (2002). The Santa Rosa event: 40Ar/39Ar and paleomagnetic results from the Valles rhyolite near Jaramillo Creek, Jemez Mountains, New Mexico. Earth and Planetary Science Letters 197, 5164.Google Scholar
Singer, B.S., Hoffman, K.A., Pringle, M.S., Chauvin, A., Coe, R.S., (1999). Dating transitionally magnetized lavas of the late Matuyama Chron: toward a new 40Ar/39Ar timescale of reversals and events. Journal of Geophysical Research 104, 679693.CrossRefGoogle Scholar
Sun, Y., Clemens, S.C., An, Z., Yu, Z., (2006). Astronomical timesclae and palaeoclimatic implication of stacked 3.6-Myr monsoon records from the Chinese Loess Plateau. Quaternary Science Reviews 25, 3348. http://dx.doi.org/10.1016/j.quascirev.2005.07.005Google Scholar
Tisserand, A., Malaizé, B., Jullien, E., Zaragosi, S., Charlier, K., Grousset, F., (2009). African monsoon enhancement during a cold stage, Marine Isotopic Stage 6.5 (MIS6.5), 170 kyr ago. Paleoceanography http://dx.doi.org/10.1029/2008 PA001630Google Scholar
Tjallingii, R., Claussen, M., Stuut, J.-B., Fohlmeister, J., Jahn, A., Bickert, T., Lamy, F., Röhl, U., (2008). Coherent high-and low-latitude control of the northwest African hydrological balance. Nature Geosciences 1, http://dx.doi.org/10.1038/ngeo289 Google Scholar
Vidal, L., Schneider, R.R., Marchal, O., Bickert, T., Stocker, T.F., Wefer, G., (1999). Link between the north and south Atlantic during the Heinrich events of the last glacial period. Climate Dynamics 15, 909919.Google Scholar
Weeks, R., Laj, C., Endignoux, L., Fuller, M., Roberts, A., Manganne, R., Blanchard, E., Goree, W., (1993). Improvements in long-core measurement techniques: applications in palaeomagnetism and palaeoceanography. Geophysical Journal International 114, 651662.Google Scholar
Xiao, J., Hongbo, Z., Zhao, H., (1992). Variation of winter monsoon intensity on the Loess plateau, Central China during the Last 130,000 years : evidence from grain size distribution. Quaternary Research 31, 1, 1319.Google Scholar