Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-26T06:32:43.325Z Has data issue: false hasContentIssue false

Hydrographic shifts south of Australia over the last deglaciation and possible interhemispheric linkages

Published online by Cambridge University Press:  13 April 2021

Matthias Moros*
Affiliation:
Leibniz Institute for Baltic Sea Research Warnemünde, Rostock, Germany
Patrick De Deckker
Affiliation:
Research School of Earth Sciences, The Australian National University, Canberra, Australia
Kerstin Perner
Affiliation:
Leibniz Institute for Baltic Sea Research Warnemünde, Rostock, Germany
Ulysses S. Ninnemann*
Affiliation:
Department of Earth Sciences, University of Bergen and Bjerknes Centre for Climate Research, Bergen, Norway
Lukas Wacker
Affiliation:
Laboratory of Ion Beam Physics, ETH, Zürich, Switzerland
Richard Telford
Affiliation:
Ecological and Environmental Change Research Group, Department of Biological Sciences, University of Bergen, Bergen, Norway
Eystein Jansen
Affiliation:
Department of Earth Sciences, University of Bergen and Bjerknes Centre for Climate Research, Bergen, Norway
Thomas Blanz
Affiliation:
Institute of Geosciences, Kiel University, Ludwig-Meyn-Straße 10, Kiel24118, Germany
Ralph Schneider
Affiliation:
Institute of Geosciences, Kiel University, Ludwig-Meyn-Straße 10, Kiel24118, Germany
*
*Corresponding author email addresses:[email protected] (M. Moros); [email protected] (U. Ninnemann).
*Corresponding author email addresses:[email protected] (M. Moros); [email protected] (U. Ninnemann).

Abstract

Northern and southern hemispheric influences—particularly changes in Southern Hemisphere westerly winds (SSW) and Southern Ocean ventilation—triggered the stepwise atmospheric CO2 increase that accompanied the last deglaciation. One approach for gaining potential insights into past changes in SWW/CO2 upwelling is to reconstruct the positions of the northern oceanic fronts associated with the Antarctic Circumpolar Current. Using two deep-sea cores located ~600 km apart off the southern coast of Australia, we detail oceanic changes from ~23 to 6 ka using foraminifer faunal and biomarker alkenone records. Our results indicate a tight coupling between hydrographic and related frontal displacements offshore South Australia (and by analogy, possibly the entire Southern Ocean) and Northern Hemisphere (NH) climate that may help confirm previous hypotheses that the westerlies play a critical role in modulating CO2 uptake and release from the Southern Ocean on millennial and potentially even centennial timescales. The intensity and extent of the northward displacements of the Subtropical Front following well-known NH cold events seem to decrease with progressing NH ice sheet deglaciation and parallel a weakening NH temperature response and amplitude of Intertropical Convergence Zone shifts. In addition, an exceptional poleward shift of Southern Hemisphere fronts occurs during the NH Heinrich Stadial 1. This event was likely facilitated by the NH ice maximum and acted as a coup-de-grâce for glacial ocean stratification and its high CO2 capacitance. Thus, through its influence on the global atmosphere and on ocean mixing, “excessive” NH glaciation could have triggered its own demise by facilitating the destratification of the glacial ocean CO2 state.

Type
Thematic Set: Southern Hemisphere Last Glacial Maximum (SHeMax)
Copyright
Copyright © University of Washington. Published by Cambridge University Press, 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Adkins, J.F., 2013. The role of deep ocean circulation in setting glacial climates. Paleoceanography 28, 539561.CrossRefGoogle Scholar
Ahn, J., Brook, E.J., 2014. Siple Dome ice reveals two modes of millennial CO2 change during the last Ice Age. Nature Communications 5, 3723. https://doi.org/10.1038/ncomms4723.CrossRefGoogle ScholarPubMed
Anderson, R.F., Ali, S., Bradtmiller, L.I., Nielsen, S.H.H., Fleisher, M.Q., Anderson, B.E., Burckle, L.H., 2009. Wind-driven upwelling in the Southern Ocean and the deglacial rise in atmospheric CO2. Science 323, 14431448.CrossRefGoogle ScholarPubMed
Ayliffe, L.K., Gagan, M.K., Zhao, J.X., Drysdale, R N., Hellstrom, J.C., Hantoro, W.S., Griffiths, M.L., et al. , 2013. Rapid interhemispheric climate links via the Australasian monsoon during the last deglaciation. Nature Communications 4, 2908. https://doi:10.1038/ncomms3908.CrossRefGoogle ScholarPubMed
Barker, S., Diz, P., Vautravers, M.J., Pike, J., Knorr, G., Hall, I.R., Broecker, W.S., 2009. Interhemispheric Atlantic seesaw response during the last deglaciation. Nature 457, 10971102.CrossRefGoogle ScholarPubMed
Barker, S., Knorr, G., Vautravers, M.J., Diz, P., Skinner, L.C., 2010. Extreme deepening of the Atlantic overturning circulation during deglaciation. Nature Geoscience 3, 567571.CrossRefGoogle Scholar
Bauska, T.K., Brook, E.J., Marcott, S.A., Baggenstos, D., Shackleton, S., Severinghaus, J.P., Petrenko, V.V., 2018. Controls on millennial-scale atmospheric CO2 variability during the last glacial period. Geophysical Research Letters 45, 77317740.CrossRefGoogle Scholar
, A.W.H., 1977. An ecological, zoogeographic and taxonomic review of recent planktonic foraminifera. In: Ramsay, A.T.S. (Ed.), Oceanic Micropaleontology. Academic Press, London, pp. 1100.Google Scholar
, A.W.H., Hutson, W.H., 1977. Ecology of planktonic foraminifera and biogeographic patterns of life and fossil assemblages in the Indian Ocean. Micropaleontology 23, 369414.CrossRefGoogle Scholar
, A.W.H., Tolderlund, D.S., 1971. Distribution and ecology of living planktonic foraminifera in surface waters of the Atlantic and Indian Oceans. In: Funnel, B.M., Riedel, W.R. (Eds.), The Micropalaeontology of Oceans. Cambridge University Press, Cambridge, UK, pp. 105149.Google Scholar
Belkin, I., Gordon, A., 1996. Southern Ocean fronts from the Greenwich meridian to Tasmania. Journal of Geophysical Research 101, 36753696.CrossRefGoogle Scholar
Bendle, J., Rosell-Melé, A., Ziveri, P., 2005. Variability of unusual distribution of alkenones in the surface waters of the Nordic Seas. Paleoceanography 20, PA2001. https://doi:2010.1029/2004PA001025.CrossRefGoogle Scholar
Bereiter, B., Shackleton, S., Baggenstos, D., Kawamura, K., Severinghaus, J., 2018. Mean global ocean temperatures during the last glacial transition. Nature 553, 3944.CrossRefGoogle ScholarPubMed
Bostock, H.C., Hayward, B.W., Neil, H.L., Sabaa, A.T., Scott, G.H., 2015. Changes in the position of the Subtropical Front south of New Zealand since the last glacial period. Paleoceanography 30, 824844.CrossRefGoogle Scholar
Bronk Ramsey, C., 2008. Deposition models for chronological records. Quaternary Science Reviews 27, 4260.CrossRefGoogle Scholar
Bronk Ramsey, C., 2009. Bayesian analysis of radiocarbon dates. Radiocarbon 51, 337360.CrossRefGoogle Scholar
Bronselaer, B., Winton, M., Griffies, S.M., Hurlin, W.J., Rodgers, K.B., Sergienko, O.V., Stouffer, R.J., Russell, J.L., 2018. Change in future climate due to Antarctic meltwater. Nature 564, 5358.CrossRefGoogle ScholarPubMed
Buizert, C., Sigl, M., Severi, M., Markle, B.R., Wettstein, J.J., McConnell, J.R., Pedro, J.B., et al. , 2018. Abrupt ice-age shifts in southern westerly winds and Antarctic climate forced from the north. Nature Communications 563, 681685.CrossRefGoogle ScholarPubMed
Calvo, E., Pelejero, C., De Deckker, P., Logan, G.A. 2007. Antarctic deglacial pattern in a 30 kyr record of sea surface temperature offshore South Australia. Geophysical Research Letters 34, L13707. https://doi:10.1029/2007GL029937.CrossRefGoogle Scholar
Ceppi, P., Hwang, Y.T., Liu, X., Frierson, D.M., Hartmann, D.L., 2013. The relationship between the ITCZ and the Southern Hemispheric eddy-driven jet. Journal of Geophysical Research: Atmospheres 118, 51365146.Google Scholar
Cheng, H., Fleitmann, D., Edwards, R.L., Wang, X., Cruz, F.W., Auler, A.S., Mangini, A., et al. , 2009. Timing and structure of the 8.2 kyr BP event inferred from δ18O records of stalagmites from China, Oman, and Brazil. Geology 37, 10071010.CrossRefGoogle Scholar
Chiang, J.C., Bitz, C.M., 2005. Influence of high latitude ice cover on the marine Intertropical Convergence Zone. Climate Dynamics 25, 477496.CrossRefGoogle Scholar
Clark, P.U., Dyke, A.S., Shakun, J.D., Carlson, A.E.; Clark, J., Wohlfarth, B., Mitrovica, J. X., Hostetler, S.W., McCabe, A.M., 2009. The last glacial maximum. Science 325IN, 710714.CrossRefGoogle Scholar
Clark, P.U., Shakun, J.D., Baker, P.A., Bartlein, P.J., Brewer, S., Brook, E., Carlson, A.E., et al. , 2012. Global climate evolution during the last deglaciation. Proceedings of the National Academy of Sciences 109, 11341142.CrossRefGoogle ScholarPubMed
Crundwell, M., Scott, G., Naish, T., Carter, L., 2008. Glacial-interglacial ocean climate variability from planktonic foraminifera during the mid-Pleistocene transition in the temperate southwest Pacific, ODP site 1123. Palaeogeography, Palaeoclimatology, Palaeoecology 260, 202229.CrossRefGoogle Scholar
De Boer, A.M., Graham, R.M., Thomas, M.D., Kohfeld, K.E., 2013. The control of the Southern Hemisphere Westerlies on the position of the Subtropical Front. Journal of Geophysical Research: Oceans 118, 56695675.Google Scholar
De Deckker, P., Moros, M., Perner, K., Blanz, T., Wacker, L., Schneider, R., Barrows, T.T., et al. , 2020. Climatic evolution in the Australian region over the last 94 ka—spanning human occupancy—and unveiling the Last Glacial Maximum. Quaternary Science Reviews 249, 106593.CrossRefGoogle Scholar
De Deckker, P., Moros, M., Perner, K., Jansen, E., 2012. Influence of the tropics and southern westerlies on glacial interhemispheric asymmetry. Nature Geoscience 5, 266269.CrossRefGoogle Scholar
Denton, G.H., Anderson, R.F., Toggweiler, J.R., Edwards, R.L., Schaefer, J.M., Putnam, A.E., 2010. The last glacial termination. Science 328, 16521656.CrossRefGoogle ScholarPubMed
Diz, P., Hernández-Almeida, I., Bernárdez, P., Pérez-Arlucea, M., Hall, I.R., 2018. Ocean and atmosphere teleconnections modulate east tropical Pacific productivity at late to middle Pleistocene terminations. Earth and Planetary Science Letters 493, 8291.CrossRefGoogle Scholar
Etourneau, J., Schneider, R., Blanz, T., Martinez, P., 2010. Intensification of the Walker and Hadley atmospheric circulations during the Pliocene-Pleistocene climate transition. Earth and Planetary Science Letters 297, 103110.CrossRefGoogle Scholar
Farmer, J.R., Hönisch, B., Haynes, L.L., Kroon, D., Jung, S., Ford, H.L., Raymo, M.E., et al. , 2019. Deep Atlantic Ocean carbon storage and the rise of 100,000-year glacial cycles. Nature Geoscience 12, 355360.CrossRefGoogle Scholar
Fogwill, C.J., Turney, C.M.S., Golledge, N. R., Etheridge, N.R., Rubino, D.M., Thornton, M., Baker, D.P., Woodward, A., Wintger, J., van Ommen, K., et al, T.D.., 2017. Antarctic ice sheet discharge driven by atmosphere-ocean feedbacks at the Last Glacial Termination. Scientific Reports 7, 39979, https://10.1038/srep39979.CrossRefGoogle Scholar
Fraile, I., Schulz, M., Mulitza, S., Kucera, M., 2008. Predicting the global distribution of planktonic foraminifera using a dynamic ecosystem model. Biogeosciences 5, 891911.CrossRefGoogle Scholar
Godfrey, J.S., Ridgway, K.R., 1985. The large-scale environment of the poleward flowing Leeuwin Current, Western Australia: longshore steric height gradients, wind stresses, and geostrophic flow. Journal of Physical Oceanography 15, 481495.2.0.CO;2>CrossRefGoogle Scholar
Gottschalk, J., Skinner, L.C., Jaccard, S.L., Menviel, L., Nehrbass-Ahles, C., Waelbroeck, C., 2020. Southern Ocean link between changes in atmospheric CO2 levels and Northern-Hemisphere climate anomalies during the last two glacial periods. Quaternary Science Reviews 230, 106067. https://doi.org/10.1016/j.quascirev.2019.106067.CrossRefGoogle Scholar
Gottschalk, J., Skinner, L.C., Misra, S., Waelbroeck, C., Menviel, L., Timmermann, A., 2015. Abrupt changes in the southern extent of North Atlantic Deep Water during Dansgaard-Oeschger events. Nature Geoscience 8, 950954.CrossRefGoogle Scholar
Graham, R.M., De Boer, A. M., A.M., 2013. The Dynamical Subtropical Front. Journal of Geophysical Research Oceans 118, doi:10.1002/jgrc.20408.CrossRefGoogle Scholar
Gregoire, L.J., Payne, A.J., Valdes, P.J., 2012. Deglacial rapid sea level rises caused by ice-sheet saddle collapses. Nature 487, 219222.CrossRefGoogle ScholarPubMed
Grootes, P.M., Stuiver, M., White, J.W.C., Johnsen, S., Jouzel, J., 1993. Comparison of oxygen isotope records from the GISP2 and GRIP Greenland ice cores. Nature 366, 552554.CrossRefGoogle Scholar
Harada, N., Shin, K.H., Murata, A., Uchida, M., Nakatani, T., 2003. Characteristics of alkenones synthesized by a bloom of Emiliania huxleyi in the Bering Sea. Geochimica et Cosmochimica Acta 67, 15071519.CrossRefGoogle Scholar
Hemleben, G., Spindler, M., Anderson, O.R., 1989. Modern Planktonic Foraminifera. Springer, New York.CrossRefGoogle Scholar
Hill, P., De Deckker, P., 2004. AUSCAN Seafloor Mapping and Geological Sampling Survey on the Australian Southern Margin by RV Marion Dufresne in 2003: Final Project Report. Record 2004/04. Geoscience Australia, Canberra.Google Scholar
Jaccard, S.L., Hayes, C.T., Martínez-García, A., Hodell, D.A., Anderson, R.F., Sigman, D.M., Haug, G.H., 2013. Two modes of change in Southern Ocean productivity over the past million years. Science 339, 14191423.CrossRefGoogle ScholarPubMed
Jouzel, J., Masson-Delmotte, V., Cattani, O., Dreyfus, G., Falourd, S., Hoffmann, G., Minster, B., et al. , 2007. Orbital and millennial Antarctic climate variability over the past 800,000 years. Science 317, 793796.CrossRefGoogle ScholarPubMed
Kaiser, J., Lamy, F., Hebbeln, D., 2005. A 70-kyr sea surface temperature record off southern Chile (Ocean Drilling Program site 1233). Paleoceanography 20. https://doi.org/10.1029/2005PA001146.CrossRefGoogle Scholar
King, A.L., Howard, W.R., 2003. Planktonic foraminiferal flux seasonality in subantarctic sediment traps: a test for paleoclimate reconstructions. Paleoceanography and Paleoclimatology 18. https://doi:10.1029/2002PA000839.Google Scholar
Kohfeld, K.E., Graham, R.M., de Boer, A.M., Sime, L.C., Wolff, E.W., Le Quéré, C., Bopp, L., 2013. Southern Hemisphere westerly wind changes during the Last Glacial Maximum: paleo-data synthesis. Quaternary Science Reviews 68, 7695.CrossRefGoogle Scholar
Lee, S.Y., Chiang, J.C., Matsumoto, K., Tokos, K.S., 2011. Southern Ocean wind response to North Atlantic cooling and the rise in atmospheric CO2: modeling perspective and paleoceanographic implications. Paleoceanography 26. https://doi:10.1029/2010PA002004.CrossRefGoogle Scholar
Liu, Y.H., Henderson, G.M., Hu, C.Y., Mason, A.J., Charnley, N., Johnson, K.R., Xie, S.C., 2013. Links between the East Asian monsoon and North Atlantic climate during the 8,200 year event. Nature Geoscience 6, 117120.CrossRefGoogle Scholar
Lochte, A.A., Repschläger, J., Kienast, M., Garbe-Schönberg, D., Andersen, N., Hamann, C., Schneider, R., 2019. Labrador Sea freshening at 8.5 ka BP caused by Hudson Bay ice saddle collapse. Nature Communications 10, 19.CrossRefGoogle ScholarPubMed
Lourantou, A., Lavrič, J.V., Köhler, P., Barnola, J.M., Paillard, D., Michel, E., Raynaud, D., Chappellaz, J., 2010. Constraint of the CO2 rise by new atmospheric carbon isotopic measurements during the last deglaciation. Global Biogeochemical Cycles 24. https://doi:10.1029/2009GB003545.CrossRefGoogle Scholar
Marcott, S.A., Bauska, T.K., Buizert, C., Steig, E.J., Rosen, J.L., Cuffey, K.M., McConnell, J.R., 2014. Centennial-scale changes in the global carbon cycle during the last deglaciation. Nature 514, 616619.CrossRefGoogle ScholarPubMed
Marson, J.M., Mysak, L.A., Mata, M.M., Wainer, I., 2016. Evolution of the deep Atlantic water masses since the last glacial maximum based on a transient run of NCAR-CCSM3. Climate Dynamics 47, 865877.CrossRefGoogle Scholar
Menviel, L., Spence, P., Yu, J., Chamberlain, M.A., Matear, R.J., Meissner, K.J., England, M.H., 2018. Southern Hemisphere westerlies as a driver of the early deglacial atmospheric CO2 rise. Nature Communications 9, 2503. https://doi.org/10.1038/s41467-018-04876-4.CrossRefGoogle ScholarPubMed
Middleton, J.F., Bye, J.A.T., 2007. A review of the shelf-slope circulation along Australia's southern shelves: Cape Leeuwin to Portland. Progress in Oceanography 75, 141.CrossRefGoogle Scholar
Mohtadi, M., Prange, M., Oppo, D.W., De Pol-Holz, R., Merkel, U., Zhang, X., Steinke, S., Lückge, A., 2014. North Atlantic forcing of tropical Indian Ocean climate. Nature 509, 7680.CrossRefGoogle ScholarPubMed
Morrill, C., Ward, E.M., Wagner, A.J., Otto-Bliesneer, B.L., Rosenbloom, N., 2014. Large sensitivity to freshwater forcing location in 8.2 ka simulations. Nature Geoscience 29, 930945.Google Scholar
Morrow, R., Donguy, J-R., Chaigneau, A., Rintoul, S.R., 2004. Cold-core anomalies at the subantarctic front, south of Tasmania. Deep Sea Research Part I: Oceanographic Research Papers 51, 14171440.CrossRefGoogle Scholar
Moy, A.D., Palmer, M.R., Howard, W.R., Bijma, J., Cooper, M.J., Calvo, E., Pelejero, C., Gagan, M.K., Chalk, T.B., 2019. Varied contribution of the Southern Ocean to deglacial atmospheric CO2 rise. Nature Geoscience 12, 10061011.CrossRefGoogle Scholar
Müller, P.J., Kirst, G., Ruhland, G., von Storch, I., Rosell-Mele, B., 1998. Calibration of the alkenone paleotemperature index UK’37 based on core tops from the eastern southern South Atlantic and the global ocean (60°N-60°S). Geochimica Cosmochimica Acta 62, 17571772.CrossRefGoogle Scholar
Nielsen, S.B., Jochum, M., Pedro, J.B., Eden, C., Nuterman, R., 2019. Two-timescale carbon cycle response to an AMOC collapse. Paleoceanography and Paleoclimatology 34, 511523.CrossRefGoogle Scholar
Parker, F.L., 1962. Planktonic foraminiferal species in Pacific sediments. Micropaleontology 8, 219254.CrossRefGoogle Scholar
Parrenin, F., Masson-Delmotte, V., Köhler, P., Raynaud, D., Paillard, D., Schwander, J., Barbante, C., Landais, A., Wegner, A., Jouzel, J., 2013. Synchronous change of atmospheric CO2 and Antarctic temperature during the last deglacial warming. Science 339, 10601063.CrossRefGoogle ScholarPubMed
Pearce, A.F., Hutchins, J.B., 2009. Oceanic processes and the recruitment of tropical fish at Rottnest Island (Western Australia). Journal of the Royal Society of Western Australia 92, 179195.Google Scholar
Pearce, A.F., Phillips, B.F., 1988. ENSO events, the Leeuwin Current and larval recruitment of the western rock lobster. Journal du Conseil International pour l'Exploration de la Mer 45, 1321.CrossRefGoogle Scholar
Pedro, J.B., Bostock, H.C., Bitz, C.M., He, F., Vandergoes, M.J., Steig, E.J., Chase, B.M., et al. , 2015. The spatial extent and dynamics of the Antarctic cold reversal. Nature Geoscience 9, 5155.CrossRefGoogle Scholar
Pedro, J.B., Jochum, M., Buizert, C., He, F., Barker, S., Rasmussen, S.O., 2018. Beyond the bipolar seesaw: toward a process understanding of interhemispheric coupling. Quaternary Science Reviews 192, 2746.CrossRefGoogle Scholar
Peeters, F.J.C., Acheson, R., Brummer, G.-J.A., de Ruijter, W.P.M., Schneider, R.R., Ganssen, G.M., Ufkes, E., Kroon, D., 2004. Vigorous exchange between the Indian and Atlantic Oceans at the end of the past five glacial periods. Nature 430, 661665.CrossRefGoogle Scholar
Pelejero, C., Calvo, E., Logan, G.A., De Deckker, P., 2003. Marine Isotopic Stage 5e in the Southwest Pacific: similarities with Antarctica and ENSO inferences. Geophysical Research Letters 30, 2185. https://doi:10.1029/2003GL018191.CrossRefGoogle Scholar
Perner, K., Moros, M., De Deckker, P., Blanz, T., Wacker, L., Telford, R., Siegel, H., Schneider, R., Jansen, E., 2018. Heat export from the tropics drives mid to late Holocene palaeoceanographic changes offshore southern Australia. Quaternary Science Reviews, 180, 96110.CrossRefGoogle Scholar
Perren, B.B., Hodgson, D., Roberts, S.J., Sime, L., Van Nieuwenhuyze, W., Verleye, E., Vyverman, W., 2020. Southward migration of the Southern Hemisphere westerly winds corresponds with warming climate over centennial timescales. Communications Earth Environment. https://doi.org/10.1038/s43247-020-00059-6.CrossRefGoogle Scholar
Prahl, F.G., Wakeham, S.G., 1987. Calibration of unsaturation patterns in long-chain ketone compositions for paleotemperature assessment. Nature 330, 367369.CrossRefGoogle Scholar
Putnam, A.E., Schaefer, J.M., Denton, G.H., Barrell, D.J.A., Andersen, B.G., Koffman, T.N.B., Rowan, A.V., et al. , 2013. Warming and glacier recession in the Rakaia Valley, southern Alps of New Zealand, during Heinrich Stadial 1. Earth and Planetary Science Letters 382, 98110.CrossRefGoogle Scholar
Rae, J.W., Burke, A., Robinson, L.F., Adkins, J.F., Chen, T., Cole, C., Greenop, R., et al. , 2018. CO2 storage and release in the deep Southern Ocean on millennial to centennial timescales. Nature 562, 569573.CrossRefGoogle ScholarPubMed
Raymo, M.E., 1997. The timing of major climate terminations. Paleoceanography 12, 577585.CrossRefGoogle Scholar
Reimer, P.J., Bard, E., Bayliss, A., Beck, J.W., Blackwell, P.G., Bronk Ramsey, C., Buck, C.E., et al. , 2013. IntCal13 and MARINE013 radiocarbon age calibration curves 0-50000 years cal BP. Radiocarbon 55, 18691887.CrossRefGoogle Scholar
Rintoul, S.R., Donguy, J.R., Roemmich, D.H., 1997. Seasonal evolution of upper ocean thermal structure between Tasmania and Antarctica. Deep Sea Research Part I: Oceanographic Research Papers 44, 11851202.CrossRefGoogle Scholar
Roberts, W.H.G., Valdes, P.J., Singarayer, J.S., 2017. Can energy fluxes be used to interpret glacial/interglacial precipitation changes in the tropics? Geophysical Research Letters 44, 63736382.CrossRefGoogle Scholar
Rosell-Melé, A., 1998. Interhemispheric appraisal of the value of alkenone indices as temperature and salinity proxies in high latitude locations. Paleoceanography 13, 694703.CrossRefGoogle Scholar
Rosell-Melé, A., Jansen, E., Weinelt, M., 2002. Appraisal of a molecular approach to infer variations in surface ocean freshwater inputs into the North Atlantic during the last glacial. Global and Planetary Change 34, 143152.CrossRefGoogle Scholar
Röthlisberger, R., Mulvaney, R., Wolff, E.W., Hutterli, M.A., Bigler, M., Sommer, S., Jouzel, J., 2002. Dust and sea salt variability in central East Antarctica (Dome C) over the last 45 kyrs and its implications for southern high-latitude climate. Geophysical Research Letters 29. https://doi.org/10.1029/2002GL015186.CrossRefGoogle Scholar
Scott, G.H., 2013. Planktonic foraminifera as oceanographic proxies: comparison of biogeographic classifications using some southwest Pacific core-top faunas. ISRN Oceanography 2013, 508184. https://doi.org/10.5402/2013/508184.CrossRefGoogle Scholar
Shakun, J.D., Clark, P.U., Feng, H., Marcott, S.H., Mix, A.C., Liu, Z., Otto-Bliesner, B., Schmittner, A., Bard, E., 2012. Global warming preceded by increasing carbon dioxide concentrations during the last deglaciation. Nature 484, 4955.CrossRefGoogle ScholarPubMed
Shao, A.E., Gille, S.T., Mecking, S., Thompson, L., 2015. Properties of the Subantarctic Front and Polar Front from the skewness of sea level anomaly. Journal of Geophysical Research: Oceans 120, 51795193.Google Scholar
Sicre, M.A., Bard, E., Ezat, U., Rostek, F., 2002. Alkenone distributions in the North Atlantic and Nordic sea surface waters. Geochemistry Geophysics Geosystems 3. https://doi:10.1029/2001GC00015.CrossRefGoogle Scholar
Sigman, D.M., Hain, M.P., Haug, G.H., 2010. The polar ocean and glacial cycles in atmospheric CO2 concentration. Nature 466, 4755.CrossRefGoogle Scholar
Sikes, E.L., Guiderson, T.P., 2016. Southwest Pacific Ocean surface reservoir ages since the last glaciation: Circulation insights from multiple-core studies. Paleoceanography 31, 298310, https://doi:10.1002/2015PA002855.CrossRefGoogle Scholar
Sikes, E.L., Howard, W.R., Samson, C.R., Mahan, T.S., Robertson, L.G., Volkman, J.K., 2009. Southern Ocean seasonal temperature and Subtropical Front movement on the South Tasman Rise in the late Quaternary. Paleoceanography 24, PA2201. https://doi.org/10.1029/2008PA001659.CrossRefGoogle Scholar
Silvano, A., Rintoul, S.R., Peña-Molino, B., Hobbs, W.R., van Wijk, E., Aoki, S., Tamura, T., Williams, G.D., 2018. Freshening by glacial meltwater enhances melting of ice shelves and reduces formation of Antarctic Bottom Water. Science Advances 4, eaap9467. https://doi.org/10.1126/sciadv.aap9467.CrossRefGoogle ScholarPubMed
Simon, J.L.E., Rodrigues, R.R., 2019. The variability of the Subantarctic Front and the Southern Hemisphere atmospheric jet. Brazilian Journal of Oceanography 67, e19256. https://doi.org/10.1590/s1679-87592019025606712.CrossRefGoogle Scholar
Stager, J.C., Ryves, D.B., Chase, B.M., Pausata, F.S., 2011. Catastrophic drought in the Afro-Asian monsoon region during Heinrich Event 1. Science 331, 12991302.CrossRefGoogle ScholarPubMed
Tierney, J.E., Russell, J.M., Huang, Y., Damsté, J.S.S., Hopmans, E.C., Cohen, A.S., 2008. Northern Hemisphere controls on tropical southeast African climate during the past 60,000 years. Science 322, 252255.CrossRefGoogle ScholarPubMed
Toggweiler, J.R., Russell, J.L., Carson, S.R., 2006. Midlatitude westerlies, atmospheric CO2, and climate change during the ice ages. Paleoceanography 21. https://doi.org/10.1029/2005PA001154.CrossRefGoogle Scholar
Tzedakis, P.C., Crucifix, M., Mitsui, T., Wolff, E.W., 2017. A simple rule to determine which insolation cycles lead to interglacials. Nature 542, 427432.CrossRefGoogle ScholarPubMed
Wagner, A.J., Morrill, C., Otto-Bliesner, B.L., Rosenbloom, N., Watkins, K.R., 2013. Model support for forcing of the 8.2 ka event by meltwater from the Hudson Bay ice dome. Climate Dynamics 41, 28552873.CrossRefGoogle Scholar
WAIS Divide Project Members, 2013. Onset of deglacial warming in West Antarctica driven by local orbital forcing. Nature 500, 440444.CrossRefGoogle Scholar
Watson, A.J., Vallis, G.K., Nikurashin, M., 2015. Southern Ocean buoyancy forcing of ocean ventilation and glacial atmospheric CO2. Nature Geoscience 8, 861864.CrossRefGoogle Scholar
Wiersma, A.P., Jongma, J.I., 2010. A role for icebergs in the 8.2 ka climate event. Climate Dynamics 35, 535549.CrossRefGoogle Scholar
Wijffels, S., Beggs, H., Griffin, C., Middleton, J.F., Cahill, M., King, E., Feng, M., Benthuysen, J.A., Steinberg, G.R., Sutton, P., 2018. A fine spatial-scale sea surface temperature atlas of the Australian regional seas (SSTAARS): seasonal variability and trends around Australasia and New Zealand revisited. Journal of Marine Systems 187, 156196.CrossRefGoogle Scholar
Wilmes, S.B., Schmittner, A., Green, J.M., 2019. Glacial ice sheet extent effects on modeled tidal mixing and the global overturning circulation. Paleoceanography and Paleoclimatology 34, 14371454.CrossRefGoogle Scholar
Wolff, E.W., Fischer, H., Röthlisberger, R., 2009. Glacial terminations as southern warmings without northern control. Nature Geoscience 2, 206209.CrossRefGoogle Scholar
Supplementary material: PDF

Moros et al. supplementary material

Moros et al. supplementary material

Download Moros et al. supplementary material(PDF)
PDF 8 MB