Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-26T06:12:49.216Z Has data issue: false hasContentIssue false

Hydroclimate Implications of Thermocline Variability in the Southern South China Sea Over the Past 180,000 yr

Published online by Cambridge University Press:  20 January 2017

Liang Dong
Affiliation:
State Key Laboratory of Marine Geology, Tongji University, Shanghai 200092, China
Li Li*
Affiliation:
State Key Laboratory of Marine Geology, Tongji University, Shanghai 200092, China School of Earth and Environment Sciences, University of Adelaide, SA 5005, Australia
Qianyu Li
Affiliation:
State Key Laboratory of Marine Geology, Tongji University, Shanghai 200092, China
Hui Wang
Affiliation:
State Key Laboratory of Marine Geology, Tongji University, Shanghai 200092, China
Chuanlun L. Zhang
Affiliation:
State Key Laboratory of Marine Geology, Tongji University, Shanghai 200092, China
*
*Corresponding authors at: State Key Laboratory of Marine Geology, Tongji University, Shanghai 200092, China. Fax: +86 21 65988808., E-mail addresses:[email protected] (L. Li), [email protected] (Q. Li).

Abstract

Based on core-top calibration, the TEX86H-derived temperature has been considered as representing subsurface sea temperature (SSST), and the difference between the U37K′-derived sea-surface temperature (SST) and the TEX86H-derived SSST can be used to reflect the depth of thermocline (DOT) in the South China Sea region (Jia et al., 2012). We evaluated the DOT dynamics in late Quaternary records using this approach on paired analysis of samples from core MD05-2896/7 in the southern South China Sea. The reconstructed DOT over the last 180,000 yr (180 ka) displays a shoaling trend in glacial periods, which may be attributed to the strengthened cyclonic gyre by the enhanced East Asian winter monsoon and Walker circulation with prominent La Niña-like state, and vice versa in interglacial periods corresponding to reduced winter monsoon with enhanced El Niño-like state. These upper-water thermal variations testify that enhanced winter monsoon was the direct cause of an uplifted local thermocline during glacial or La Niña-like states with strengthened cyclonic gyre due to positive wind stress curl in the southern South China Sea. Our results provide insights into the relationship between monsoon and ENSO on both glacial and millennial time scales.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andreasen, D., and Ravelo, A. (1997). Tropical Pacific Ocean thermocline depth reconstructions for the last glacial maximum. Paleoceanography 212, 395413.CrossRefGoogle Scholar
Andreasen, D.H., Ravelo, A.C., and Broccoli, A.J. (2001). Remote forcing at the Last Glacial Maximum in the tropical Pacific Ocean. Journal of Geophysical Research 2106, 879897.CrossRefGoogle Scholar
Beaufort, L., de Garidel-Thoron, T., Mix, A.C., and Pisias, N.G. (2001). ENSO-like forcing on oceanic primary production during the late Pleistocene. Science 2293, 24402444.Google Scholar
Beaufort, L., de Garidel-Thoron, T., Linsley, B., Oppo, D., and Buchet, N. (2003). Biomass burning and oceanic primary production estimates in the Sulu Sea area over the last 380 kyr and the East Asian monsoon dynamics. Marine Geology 2201, 5365.Google Scholar
Bolliet, T., Holbourn, A., Kuhnt, W., Laj, C., Kissel, C., Beaufort, L., Kienast, M., Andersen, N., and Garbe-Sch"nberg, D. (2011). Mindanao Dome variability over the last 160 ka: episodic glacial cooling of the West Pacific Warm Pool. Paleoceanography 226, PA1208.Google Scholar
Brassell, S., Eglinton, G., Marlowe, I., Pflaumann, U., and Sarnthein, M. (1986). Molecular stratigraphy: a new tool for climatic assessment. Nature 2320, 129133.Google Scholar
Cheng, H., Zhang, P., Sp"tl, C., Edwards, R., Cai, Y., Zhang, D., Sang, W., Tan, M., and An, Z. (2012). The climatic cyclicity in semiarid-arid central Asia over the past 500,000 years. Geophysical Research Letters 239, L01705.Google Scholar
Ding, Z., Ranov, V., Yang, S., Finaev, A., Han, J., and Wang, G. (2002). The loess record in southern Tajikistan and correlation with Chinese loess. Earth Planetary Science Letters 2200, 387400.Google Scholar
Gong, G.-C., Liu, K.K., Liu, C.-T., and Pai, S.-C. (1992). The chemical hydrography of the South China Sea west of Luzon and a comparison with the West Philippine Sea. Terrestrial, Atmospheric and Oceanic Sciences 23, 587602.Google Scholar
Guo, Z., Berger, A., Yin, Q., and Qin, L. (2009). Strong asymmetry of hemispheric climates during MIS-13 inferred from correlating China loess and Antarctica ice records. Climate of Past 25, 2131.Google Scholar
He, S., and Wang, H. (2013). Oscillating relationship between the East Asian winter monsoon and ENSO. Journal of Climate 226, 98199838.Google Scholar
He, J., Zhao, M.X., Li, L., Wang, P.X., and Ge, H.M. (2008). Sea-surface temperature and terrestrial biomarker records of the last 260 ka of core MD05-2904 from the northern South China Sea. Chinese Science Bulletin 253, 23762384.CrossRefGoogle Scholar
Hopmans, E.C., Weijers, J.W.H., Schefu?, E., Herfort, L., Sinninghe Damst", J.S., and Schouten, S. (2004). A novel proxy for terrestrial organic matter in sediments based on branched and isoprenoid tetraether lipids. Earth Planetary Science Letters 2224, 107116.Google Scholar
Hu, A., Jiao, N., and Zhang, C.L. (2011). Community structure and function of planktonic Crenarchaeota: changes with depth in the South China Sea. Microbial Ecology 262, 549563.Google Scholar
Huang, E., and Tian, J. (2012). Sea-level rises at Heinrich stadials of early Marine Isotope Stage 3: evidence of terrigenous n-alkane input in the southern South China Sea. Global and Planetary Change 294, 112.Google Scholar
Huang, E., Tian, J., and Steinke, S. (2011). Millennial-scale dynamics of the winter cold tongue in the southern South China Sea over the past 26 ka and the East Asian winter monsoon. Quaternary Research 275, 196204.CrossRefGoogle Scholar
Jia, G.D., Zhang, J., Chen, J.F., Peng, P.A., and Zhang, C.L. (2012). Archaeal tetraether lipids record subsurface water temperature in the South China Sea. Organic Geochemistry 250, 6877. 10.1016/j.orggeochem.2012.07.002.Google Scholar
Jian, Z.M., Li, B.H., Huang, B.Q., and Wang, J.L. (2000a). Globorotalia truncatulinoides as indicator of upper-ocean thermal structure during the Quaternary: evidence from the South China Sea and Okinawa Trough. Palaeogeography, Palaeoclimatology, Palaeoecology 2162, 287298.Google Scholar
Jian, Z.M., Wang, P.X., Chen, M.-P., Li, B.H., Zhao, Q.H., B"hring, C., Laj, C., Lin, H.-L., Pflaumann, U., Bian, Y.H., Wang, R.J., and Cheng, X.R. (2000b). Foraminiferal responses to major Pleistocene paleoceanographic changes in the southern South China Sea. Paleoceanography 215, 229243.Google Scholar
Jian, Z., Tian, J., and Sun, X. (2009). Upper Water Structure and Paleo-Monsoon. Wang, P.X., Li, Q.Y. The South China Sea: Paleoceanography and Sedimentology Springer, Netherlands.297394.Google Scholar
Karner, M.B., DeLong, E.F., and Karl, D.M. (2001). Archaeal dominance in the mesopelagiczone of the Pacific Ocean. Nature 2409, 507510.Google Scholar
Kim, J.-H., Schouten, S., Hopmans, E.C., Donner, B., and Sinninghe Damst", J.S. (2008). Global sediment core-top calibration of the TEX 86 paleothermometer in the ocean. Geochimica et Cosmochimica Acta 272, 11541173.Google Scholar
Kim, J.-H., van der Meer, J., Schouten, S., Helmke, P., Willmott, V., Sangiorgi, F., Ko", N., Hopmans, E.C., and Damst", J.S.S. (2010). New indices and calibrations derived from the distribution of crenarchaeal isoprenoid tetraether lipids: implications for past sea-surface temperature reconstructions. Geochimica et Cosmochimica Acta 274, 46394654.Google Scholar
Koutavas, A., and Joanides, S. (2012). El Ni"o"Southern Oscillation extrema in the Holocene and Last Glacial Maximum. Paleoceanography 227, PA4208.Google Scholar
Koutavas, A., Lynch-Stieglitz, J., Marchitto, T.M., and Sachs, J.P. (2002). El Ni"o-like pattern in ice age tropical Pacific sea-surface temperature. Science 2297, 226230.CrossRefGoogle Scholar
Koutavas, A., Olive, G.C., and Lynch-Stieglitz, J. (2006). Mid-Holocene El Ni"o"Southern Oscillation (ENSO) attenuation revealed by individual foraminifera in eastern tropical Pacific sediments. Geology 234, 993996.Google Scholar
Laj, C., Wang, P., and Balut, Y. (2005). IPEV les rapports de campagnes " la mer. MD147/MARCO POLO-IMAGES XII" bord du "Maion Dufresne"(59 pp.).Google Scholar
Lan, J., Zhang, N., and Wang, Y. (2013). On the dynamics of the South China Sea deep circulation. Journal of Geophysical Research, Oceans 2118, 12061210.Google Scholar
Lea, D.W., Pak, D.K., and Spero, H.J. (2000). Climate impact of late Quaternary equatorial Pacific sea surface temperature variations. Science 2289, 17191724.Google Scholar
Leduc, G., Vidal, L., Cartapanis, O., and Bard, E. (2009). Modes of eastern equatorial Pacific thermocline variability: implications for ENSO dynamics over the last glacial period. Paleoceanography 224, PA3202.Google Scholar
Leech, P.J., Lynch-Stieglitz, J., and Zhang, R. (2013). Western Pacific thermocline structure and the Pacific marine Intertropical Convergence Zone during the Last Glacial Maximum. Earth Planetary Science Letters 2363, 133143.Google Scholar
Li, Q.Y., Zheng, F., Chen, M.H., Xiang, R., Qiao, P.J., Shao, L., and Cheng, X.R. (2010). Glacial paleoceanography off the mouth of the Mekong River, southern South China Sea, during the last 500 ka. Quaternary Research 273, 563572.Google Scholar
Li, L., Li, Q.Y., Tian, J., Wang, P.X., Wang, H., and Liu, Z.H. (2011). A 4-Ma record of thermal evolution in the tropical western Pacific and its implications on climate change. Earth Planetary Science Letters 2309, 1020.Google Scholar
Li, D.W., Zhao, M.X., Tian, J., and Li, L. (2013). Comparison and implication of TEX 86 and (image) temperature records over the last 356 ka of ODP Site 1147 from the northern South China Sea. Palaeogeography, Palaeoclimatology, Palaeoecology 2376, 213223.Google Scholar
Lisiecki, L.E., and Raymo, M.E. (2005). A Pliocene-Pleistocene stack of 57 globally distributed benthic ?18O records. Paleoceanography 220, PA1003 10.1029/2004PA001071.Google Scholar
Liu, K.-K., Chao, S.-Y., Shaw, P.-T., Gong, G.-C., Chen, C.-C., and Tang, T. (2002). Monsoon-forced chlorophyll distribution and primary production in the South China Sea: observations and a numerical study. Deep Sea Research Part I: Oceanographic Research 249, 13871412.Google Scholar
Liu, Q., Jiang, X., Xie, S.P., and Liu, W.T. (2004). A gap in the Indo-Pacific warm pool over the South China Sea in boreal winter: seasonal development and interannual variability. Jounarl of Geophysical Research 2109, C07012 10.1029/2003JC002179.Google Scholar
Liu, Z., Pagani, M., Zinniker, D., Deconto, R., Huber, M., Brinkhuis, H., Shah, S.R., Leckie, R.M., and Pearson, A. (2009). Global cooling during the Eocene-Oligocene climate transition. Science 2323, 11871190.Google Scholar
Lopes dos Santos, R.A., Prange, M., Casta"eda, I.S., Schefu", E., Mulitza, S., Schulz, M., Niedermeyer, E.M., Sinninghe Damst", J.S., and Schouten, S. (2010). Glacial"interglacial variability in Atlantic meridional overturning circulation and thermocline adjustments in the tropical North Atlantic. Earth Planetary Science Letters 2300, 407414.Google Scholar
Pelejero, C., and Grimalt, J.O. (1997). The correlation between the UK? 37 index and sea surface temperatures in the warm boundary: the South China Sea. Geochimica et Cosmochimica Acta 261, 47894797.Google Scholar
Picaut, J., Ioualalen, M., Menk"s, C., Delcroix, T., and McPhaden, M. (1996). Mechanism of the zonal displacements of the Pacific warm pool: implications for ENSO. Science 2274, 14861489.Google Scholar
Ravelo, A., and Fairbanks, R. (1992). Oxygen isotopic composition of multiple species of planktonic foraminifera: recorders of the modern photic zone temperature gradient. Paleoceanography 27, 815831.Google Scholar
Ravelo, A., and Shackleton, N. (1995). Evidence for surface-water circulation changes at Site 851 in the eastern tropical Pacific Ocean. Proceedings of the Ocean Drilling Program, Scientific Results 2138, 503514.Google Scholar
Sagawa, T., Yokoyama, Y., Ikehara, M., and Kuwae, M. (2012). Shoaling of the western equatorial Pacific thermocline during the last glacial maximum inferred from multispecies temperature reconstruction of planktonic foraminifera. Palaeogeography, Palaeoclimatology, Palaeoecology 2346, 120129.Google Scholar
Sakai, K., and Kawamura, R. (2009). Remote reponse of the East Asian winter monsoon to tropical forcing related to El Nino-Southern Oscillation. Journal of Geophysical Research: Atmoshperes 2114, D06105 10.1029/2008JD010824.Google Scholar
Schouten, S., Hopmans, E., Schefu", E., and Damste, J.S.S. (2002). Distributional variations in marine crenarchaeotal membrane lipids: a new tool for reconstructing ancient sea water temperatures?. Earth Planetary Science Letters 2204, 265274.CrossRefGoogle Scholar
Schouten, S., Huguet, C., Hopmans, E.C., Kienhuis, M.V.M., and Sinninghe Damst", J.P. (2007). Analytical methodology for TEX 86 paleothermometry by high-performance liquid chromatography/atmospheric pressure chemical ionization-mass spectrometry. Analytical Chemistry 279, 29402944.Google Scholar
Shaari, H., Yamamoto, M., and Irino, T. (2013). Enhanced upwelling in the eastern equatorial Pacific at the last five glacial teminations. Palaeogeography, Palaeoclimatology, Palaeoecology 2386, 815.Google Scholar
Shaari, H., Yamamoto, M., Irino, T., and Oba, T. (2014). Nutricline shoaling in the eastern Pacific warm pool during the last two glacial maxima. Journal of Oceanography 270, 2534.Google Scholar
Steinke, S., Mohtadi, M., Groeneveld, J., Lin, L.C., L"wemark, L., Chen, M.T., and Rendle-B"hring, R. (2010). Reconstructing the southern South China Sea upper water column structure since the Last Glacial Maximum: implications for the East Asian winter monsoon development. Paleoceanography 225, PA2219.Google Scholar
Steinke, S., Glatz, C., Mohtadi, M., Groeneveld, J., Li, Q., and Jian, Z. (2011). Past dynamics of the East Asian monsoon: no inverse behaviour between the summer and winter monsoon during the Holocene. Global and Planetary Change 278, 170177.Google Scholar
Stott, L., Poulsen, C., Lund, S., and Thunell, R. (2002). Supper ENSO and global climate oscillations at millennial time scales. Science 2297, 222226.Google Scholar
Su, X., Liu, C., Beaufort, L., Tian, J., and Huang, E. (2013). Late Quaternary coccolith records in the South China Sea and East Asian monsoon dynamics. Global and Planetary Change 2111, 8896.Google Scholar
Tian, J., Wang, P., Chen, R., and Cheng, X. (2005). Quaternary upper ocean thermal gradient variations in the South China Sea: implications for East Asian monsoon climate. Paleoceanography 220, PA4007.Google Scholar
Tian, J., Huang, E., and Pak, D.K. (2010). East Asian winter monsoon variability over the last glacial cycle: insights from a latitudinal sea-surface temperature gradient across the South China Sea. Palaeogeography, Palaeoclimatology, Palaeoecology 2292, 319324.Google Scholar
Tudhope, A.W., Chilcott, C.P., McCulloch, M.T., Cook, E.R., Chappell, J., Ellam, R.M., Lea, D.W., Lough, J.M., and Shimmield, G.B. (2001). Variability in the El Ni"o-southern oscillation through a glacial-interglacial cycle. Science 2291, 15111517.Google Scholar
Wang, P.X., and Li, Q.Y. (2009). The South China Sea: paleoceanography and Sedimentology. Springer, Netherlands.Google Scholar
Wang, B., Wu, R.G., and Fu, X.H. (2000). Pacific-East Asian teleconnection: how does ENSO affect East Asian climate?. Journal of Climate 212, 15171536.2.0.CO;2>CrossRefGoogle Scholar
Wang, Y.J., Cheng, H., Edwards, R.L., An, Z.S., Wu, J.Y., Shen, C.-C., and Dorale, J.A. (2001). A high-resolution absolute-dated Late Pleistocene monsoon record from Hulu Cave, China. Science 2294, 23452348.Google Scholar
Wang, P.X., Clemens, S., Beaufort, L., Braconnot, P., Ganssen, G., Jian, Z.M., Kershaw, P., and Sarnthein, M. (2005). Evolution and variability of the Asian monsoon system: state of the art and outstanding issues. Quaternary Science Reviews 224, 595629.Google Scholar
Wang, Y.J., Cheng, H., Edwards, R.L., Kong, X., Shao, X., Chen, S., Wu, J., Jiang, X., Wang, X., and An, Z. (2008). Millennial- and orbital-scale changes in the East Asian monsoon over the past 224,000 years. Nature 2451, 10901093.Google Scholar
Wang, G., Xie, S.P., Qu, T., and Huang, R.X. (2011). Deep South China Sea circulation. Geophysical Research Letters 238, L05601.Google Scholar
Wang, L., Li, J.J., Lu, H.Y., Gu, Z.Y., Rioual, P., Hao, Q.Z., Mackay, A.W., Jiang, W.Y., Cai, B.G., Xu, B., Han, J.T., and Chu, G.Q. (2012). The East Asian winter monsoon over the last 15,000 years: its links to high-latitudes and tropical climate systems and complex correlation to the summer monsoon. Quaternary Science Reviews 232, 131142.Google Scholar
Wei, Y., Wang, J., Liu, J., Dong, L., Li, L., Wang, H., Wang, P., Zhao, M., and Zhang, C.L. (2011). Spatial variations in archaeal lipids of surface water and core-top sediments in the South China Sea and theirimplications for paleoclimate studies. Applied and Environmental Microbiology 277, 74797489.Google Scholar
Wuchter, C., Schouten, S., Wakeham, S.G., and Damst", J.S.S. (2005). Temporal and spatial variation in tetraether membrane lipids of marine Crenarchaeota in particulate organic matter: implications for TEX 86 paleothermometry. Paleoceanography 220, 111.Google Scholar
Xu, J., Wang, P.X., Huang, B.Q., Li, Q.Y., and Jian, Z.M. (2005). Response of planktonic foraminifera to glacial cycles: Mid-Pleistocene change in the southern South China Sea. Marine Micropaleontology 254, 89105.Google Scholar
Yamamoto, M., Sai, H., Chen, M.-T., and Zhao, M. (2013). The East Asian winter monsoon variability in response to precession during the past 150 000 yr. Climate of Past 29, 27772788.Google Scholar
Zhao, M., Huang, C.Y., Wang, C.C., and Wei, G. (2006). A millennial-scale UK? 37 sea-surface temperature record from the South China Sea (8" N) over the last 150 kyr: monsoon and sea-level influence. Palaeogeography, Palaeoclimatology, Palaeoecology 2236, 3955.Google Scholar