Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-26T13:13:49.318Z Has data issue: false hasContentIssue false

Human settlement and vegetation-climate relationships in the Greenland Stadial 5 at the Piovesello site (Northern Apennines, Italy)

Published online by Cambridge University Press:  16 October 2018

Marco Peresani*
Affiliation:
University of Ferrara, Dipartimento di Studi Umanistici, Sezione di Scienze Preistoriche e Antropologiche, Corso Ercole I d’Este, 32, 44100 Ferrara(Italy)
Cesare Ravazzi
Affiliation:
CNR - Institute for the Dynamics of Environmental Processes, Research Group on Vegetation, Climate, Human Stratigraphy - Laboratory of Palynology and Palaeoecology, Piazza della Scienza 1, 20126 Milano(Italy)
Roberta Pini
Affiliation:
CNR - Institute for the Dynamics of Environmental Processes, Research Group on Vegetation, Climate, Human Stratigraphy - Laboratory of Palynology and Palaeoecology, Piazza della Scienza 1, 20126 Milano(Italy)
Davide Margaritora
Affiliation:
University of Ferrara, Dipartimento di Studi Umanistici, Sezione di Scienze Preistoriche e Antropologiche, Corso Ercole I d’Este, 32, 44100 Ferrara(Italy)
Arianna Cocilova
Affiliation:
University of Ferrara, Dipartimento di Studi Umanistici, Sezione di Scienze Preistoriche e Antropologiche, Corso Ercole I d’Este, 32, 44100 Ferrara(Italy)
Davide Delpiano
Affiliation:
University of Ferrara, Dipartimento di Studi Umanistici, Sezione di Scienze Preistoriche e Antropologiche, Corso Ercole I d’Este, 32, 44100 Ferrara(Italy)
Stefano Bertola
Affiliation:
University of Ferrara, Dipartimento di Studi Umanistici, Sezione di Scienze Preistoriche e Antropologiche, Corso Ercole I d’Este, 32, 44100 Ferrara(Italy)
Lorenzo Castellano
Affiliation:
New York University, Institute for the Study of the Ancient World, 15 East 84th Street, 10018 New York(USA)
Fabio Fogliazza
Affiliation:
Natural History Museum of Milan, Corso Venezia 55, 20121 Milano(Italy)
Gabriele Martino
Affiliation:
Collaborator of Soprintendenza Archeologia, Belle Arti e Paesaggio per la città metropolitana di Genova e le province di Imperia, La Spezia e Savona, via Balbi, 10, 16126 Genova(Italy)
Cristiano Nicosia
Affiliation:
Università di Padova, Dipartimento dei Beni Culturali, Piazza Capitaniato 7, 35139 Padova(Italy)
Patrick Simon
Affiliation:
Musée d’Anthropologie préhistorique de Monaco, 56 bis Boulevard du Jardin Exotique, 98000Monaco
*
*Corresponding author at: [email protected]

Abstract

The Gravettian settlements of Europe are considered as an expression of human adaptation to harsh climates. In Southern Europe, however, favorable vegetation-climate conditions supported hunters-gatherer subsistence and the maintenance of their large-scale networks. This was also the case of the North-Adriatic plain and the Apennine mountain ridge in Italy. Traditionally considered lacking evidence, the northern part of the Apennine ridge has recently yielded the Early Gravettian site of Piovesello, located at 870 m a.s.l. Survey and excavation revealed lithic artifacts in primary position embedded in loamy sediments. Radiocarbon dating, anthracological and extended palynological and microcharcoal analyses have been integrated to reconstruct the palaeoecological context of this camp which was probably positioned above the timberline in an arid rocky landscape, bounding the fronts of local glaciers close to their maximum expansion at the time of Greenland Stadial (GS) 5 (32.04 - 28.9 ka cal BP). Human activity left ephemeral traces represented by lithic artefacts, charcoal, and the introduction of radiolarites from sources in proximity to the site and of chert from very far western sources. Evidence from Piovesello contributes to the reconstruction of human and vegetation ecology during Late Pleistocene glaciations and also provides hints for the historical biogeography of petrophytic plants and their orographic relics in the northern Apennine.

Type
Research Article
Copyright
Copyright © University of Washington. Published by Cambridge University Press, 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbate, E., Bortolotti, V., Principi, G. 1980. Apennines ophiolites: a peculiar oceanic crust. In: Rocci G. (Ed.), Tethyan ophiolites, Western Area. Ofioliti, Spec. Issue, 1, 59–96.Google Scholar
Adam, E., 2007. Looking out for the Gravettian in Greece. Paléo 19, 145158.Google Scholar
Alessandrini, A., 1984. Il Pino mugo. In: AA.VV. Il Monte Nero. Regione Emilia Romagna, Bologna.Google Scholar
Aranguren, B., Revedin, A. (Eds.), 2008. Bilancino : a 30,000 Years Ago Camp-Site in Mugello, Florence. Istituto Italiano di Preistoria e Protostoria, Firenze.Google Scholar
Aranguren, B., Cavulli, F., D’Orazio, M., Grimaldi, S., Longo, L., Revedin, A., Santaniello, F. 2015. Territorial exploitation in the Tyrrhenian Gravettian Italy: The case-study of Bilancino (Tuscany). Quaternary International 359–360, 442451.Google Scholar
Archibold, O.W., 1995. Ecology of World Vegetation. Chapman & Hall, London.Google Scholar
Arrigoni, P.V., 2015. Contribution to the study of the genus Armeria (Plumbaginaceae) in the Italian peninsula. Flora Mediterranea 25 (Special Issue), 732.Google Scholar
Arrigoni, P.V., Ricceri, C., Mazzanti, A., 1983. La vegetazione serpentinicola del Monte Ferrato di Prato in Toscana. Centro di Scienze Naturali Prato, Pistoia, pp. 127.Google Scholar
Badino, F., Ravazzi, C., Vallè, F., Pini, R., Aceti, A., Brunetti, M., Champvillair, E., Maggi, V., Maspero, F., Perego, R., Orombelli, G., 2018. 8800 Years of high-altitude vegetation and climate history at the Rutor Glacier forefield, Italian Alps. Evidence of Middle Holocene timberline rise and glacier contraction. Quaternary Science Reviews 185, 4168.Google Scholar
Ballian, D., Ravazzi, C., De Rigo, D., Caudullo, G., 2016. Pinus mugo in Europe: distribution, habitat, usage and threats. In: San-Miguel-Ayanz, J., de Rigo, D., Caudullo, G., Houston Durrant, T., Mauri, A. (Eds.), European Atlas of Forest Tree Species. Publ. Off. EU, Luxembourg, pp. 124125.Google Scholar
Bernaldo de Quirós, F., Maíllo-Fernández, J.-M., Castaños, P., Neira, A., 2015. The Gravettian of El Castillo revisited (Cantabria, Spain). Quaternary International 359-360, 462478.Google Scholar
Bernini, M., Tellini, C., Vescovi, P., Zanzucchi, G., 1990. Da Pontremoli a Berceto con traversate sul crinale appenninico. In Zanzucchi, G. (Ed.), Appennino Ligure-Emiliano. Società Geologica Italiana, Lodi, pp. 250278.Google Scholar
Bertoldi, R., Chelli, A., Roma, R., Tellini, C., 2007. New data from northern Apennines (Italy) pollen sequences spanning the last 30.000 yrs. Il Quaternario: Italian Journal of Quaternary Sciences 20, 320.Google Scholar
Bertoldi, R., Chelli, A., Roma, R., Tellini, C., Vescovi, P., 2004. First remarks on the late Pleistocene lacustrine deposit in the Berceto area (Northern Apennines, Italy). Il Quaternario: Italian Journal of Quaternary Sciences 17, 133143.Google Scholar
Bertran, P., Texier, J.-P., 1999. Facies and microfacies of slope deposits. Catena 35, 99121.Google Scholar
Beug, H.-J., 2004. Leitfaden der Pollenbestimmung für Mitteleuropa und angrenzende Gebiete. Verlag Dr. Friedrich Pfeil, München.Google Scholar
Bietti, A., Molari, C., 1994. The upper Pleistocene deposit of the Arene Candide Cave (Savona, Italy): general introduction and stratigraphy. Quaternaria Nova IV, 927.Google Scholar
Bocquet-Appel, J.P., Demars, P.Y., Noiret, L., Dobrowsky, D., 2005. Estimates of Upper Palaeolithic meta-population size in Europe from archaeological data. Journal of Archaeological Science 32, 16561668.Google Scholar
Boiffin, J., Bresson, L.M., 1987. Dynamique et formation des croutes superficielles: apport de l’analyse microscopique. In: Fedoroff, N., Bresson, L.M., Courty, M.A. (Eds.), Micromorphologie des sols. Association Française pour l’Étude du Sol, Paris, pp. 393399.Google Scholar
Boscato, P., Ronchitelli, A., Wierer, U., 1997. Il Gravettiano antico della Grotta della Cala a Marina di Camerota: paletnologia e ambiente. Rivista di Scienze Preistoriche 48, 97186.Google Scholar
Bowman, S., 1990. Radiocarbon dating. University of California Press, Berkeley and Los Angeles. 64 pp.Google Scholar
Broglio, A., Improta, S., 1995. Nuovi dati di cronologia assoluta del Paleolitico superiore e del Mesolitico del Veneto, del Trentino e del Friuli. Atti Istituto Veneto Scienze, Lettere e Arti 153, 145.Google Scholar
Bronk Ramsey, C., 2017. Methods for summarizing Radiocarbon Datasets. Radiocarbon 59, 1809–1833. Google Scholar
Burke, A., Kageyama, M., Latombe, G., Fasel, M., Vrac, M., Ramstein, G., James, P.M.A., 2017. Risky business: The impact of climate and climate variability on human population dynamics in Western Europe during the Last Glacial Maximum. Quaternary Science Reviews 164, 217229.Google Scholar
Buurman, P., Jongmans, A. G., PiPujol, M.D., 1998. Clay illuviation and mechanical clay infiltration – is there a difference? Quaternary International 51, 6669.Google Scholar
Campana, N., Martino, G., Negrino, F., Del Soldato, A., 2013. Affioramenti di rocce silicee in Liguria orientale e la cava preistorica di Valle Lagorara (Maissana, SP). In: Stagno, A.M. (Ed.), Carved mountains. Engraved stones. Contributions to the environmental resources archaeology of the Mediterranean mountains. International Workshop on Archaeology of European Mountain Landscapes, pp. 7586.Google Scholar
Cassoli, P.F., 1980. L’avifauna del Pleistocene superiore delle Arene Candide (Liguria). Memorie Istituto Italiano Paleontologia Umana 3, 155234.Google Scholar
Cassoli, P.F., Tagliacozzo, A., 1994. I macromammiferi dei livelli tardopleistocenici delle Arene Candide (Savona, Italia): considerazioni paleontologiche e archeozoologiche. Quaternaria Nova 4, 101262.Google Scholar
Chiarucci, A., Foggi, B., Selvi, F., 1995. Garigue plant communities of ultramafic outcrops of Tuscany (Central Italy). Webbia 49, 179192.Google Scholar
Cortesogno, L., Galbiati, B., Principi, G., 1987. Note alla “Carta Geologica delle ofioliti del Bracco” e ricostruzione della paleogeografia giurassico-cretacica. Ofioliti 12, 261342.Google Scholar
Cortesogno, L., Gaggero, L. 2002. La geologia dei diaspri e le rocce utilizzate per i percussori nella sequenza ofiolitica dell’Appennino. In: Campana N., Maggi R. (Eds), Archeologia in Valle Lagorara, Istituto Italiano di Preistoria, Firenze.Google Scholar
Costa, E., Vescovi, P., Zanzucchi, G., 1990. Da Berceto a Bettola attraverso la Val Taro e la Val Ceno. In Zanzucchi, G. (Ed.), Appennino Ligure-Emiliano. Società Geologica Italiana, Lodi, pp. 279301.Google Scholar
Cushing, E.J., 1967. Evidence for differential pollen preservation in Late Quaternary sediments in Minnesota. Review of Palaeobotany and Palynology 4, 87101.Google Scholar
Davis, B.A.S., Zanon, M., Collins, M., Mauri, A., Bakker, J., Barboni, D., Barthelmes, A., Beaudouin, C., Birks, H.J.B., Bjune, A.E. et al., 2013. The European Modern Pollen Database (EMPD) Project. Vegetation History and Archaeobotany 22, 521530.Google Scholar
Deaddis, M., Garozzo, L., Cherubini, P., Croce, E., De Amicis, M., Gärtner, H, Lonelli, G., Maggi, V., Pini, R., Ravazzi, C., Schneider, L., 2017. Environmental changes in the central Po Plain during the Last Glaciation : paleobotanical and radiocarbon data from sections in the area between the Adda and Serio Rivers. LII Riunione Scientifica Istituto Italiano Preistoria e Protostoria. Abstract book, 2-7.Google Scholar
De Ploey, J., Mücher, H.J., 1981. A consistency index and rainwash mechanisms on Belgian loamy soils. Earth Surface Processes and Landforms 6, 319330.Google Scholar
Dean, W.E., 1974. Determination of carbonate and organic matter in calcareous sediments and sedimentary rocks by loss on ignition: comparison with other methods. Journal of Sedimentary Petrology 44, 242248.Google Scholar
Demidenko, Y.E., 2008, The Early and Mid-Upper Palaeolithic of the North Black Sea region: an overview. Quartär 55, 99114.Google Scholar
Digan, M., 2006. Le gisement gravettien de La Vigne-Brun (Loire, France): Étude de l’industrie lithique de l’unité KL19. In: British Archaeological Reports (International Series), 1473. Oxford.Google Scholar
Djindjian, F., 1994. L’influence des frontières naturelles dans les déplacements des chasseurs-cueilleurs au Würm récent. Preistoria Alpina 28, 728 Google Scholar
Djindjian, F., 2014. Contacts and movements of human groups in the European upper Palaeolithic. The adaptations to climate changes of the resource management strategies inside the territory and the annual cycle. In García A. (Eds.) Debating Spatial Archaeology. Proceedings of the International Workshop on Landscape and Spatial Analysis in Archaeology, Santander, p. 1–43.Google Scholar
Douka, K., Grimaldi, S., Boschian, G., del Lucchese, A., Higham, T.F.G., 2012. A new chronostratigraphic framework for the Upper Palaeolithic of Riparo Mochi (Italy). Journal of Human Evolution 62, 286299.Google Scholar
Ehlers, J., Gibbard, P.L., 2004. Quaternary Glaciations - Extent and Chronology. In: Part I: Europe. Development in Quaternary Science, vol. 2. Elsevier, Amsterdam.Google Scholar
Elter, P., Ghiselli, F., Marroni, M., Ottria, G., 1997. Carta Geologica d’Italia alla scala 1:50.000: Foglio 197 - Bobbio. Istituto Poligrafico e Zecca dello Stato, Roma.Google Scholar
Foley, R., 1981. Off-site archaeology: an alternative approach for the short-sighted. In: Hodder, I., Isaac, G.L., Hammond, N. (Eds.), Patterns of the past: studies in honour of David Clarke., Cambridge University Press, Cambridge, pp. 157183.Google Scholar
Furlanetto, G., Ravazzi, C., Badino, F., Brunetti, M., Champvillair, E., Maggi, V. (submitted) - Altitudinal training sets of pollen rain-site specific temperatures as a tool for paleoclimate reconstructions in the Alps. The Holocene, manuscript number HOL-180037.Google Scholar
Gambassini, P. 2007. Traits essentiels du Gravettien en Italie. Paléo 19, 105109.Google Scholar
Giaccio, B., Rolfo, M., Galadini, F., Messina, P., Silvestrini, M., Sposato, A., 2004. La risposta ambientale ed umana alle oscillazioni climatiche sub-orbitali dello Stadio Isotopico 3: evidenze geoarcheologiche dal sito paleolitico di Fonte delle Mattinate (Piana di Colfiorito, Appennino centrale). Il Quaternario: Italian Journal of Quaternary Sciences 17(2/1), 239256.Google Scholar
Giraudi, C., 2015. The Upper Pleistocene deglaciation on the Apennines (Peninsular Italy). Cuadernos de Investigación Geográfica 41, 337358.Google Scholar
Grimaldi, S., Aranguren, B., Revedin, A., Gottardi, G., Cavulli, F., 2011. Remontages, burins de Noailles et meules: analyse de la distribution spatiale sur le site de plein air gravettien de Bilancino. In: Goutas N., Klaric L., Pesesse D., Guillermin P. (Eds.), À la recherche des identités gravettiennes: actualités, questionnements et perspectives. Actes de la Table ronde internationale, Aix-en-Provence. Société préhistorique française, Mémoire LII, pp. 8598.Google Scholar
Grimm, E.C., 1987. CONISS: a Fortran 77 program for stratigraphically cluster analysis by the method of incremental sum of squares. Computer and Geosciences 13, 1335.Google Scholar
Grimm, E.C., 2004. TGView version 2.0.2. Illinois State Museum Research and Collection Center, Springfield.Google Scholar
Horvat, I., Glavac, V., Ellenberg, H., 1974. Vegetation Südosteuropas. Gustav Fischer, Stuttgart.Google Scholar
Hughues, T.P., Carpenter, S., Rockström, J., Scheffer, M., Walker, B., 2013. Multiscale regime shifts and planetary boundaries. Trend in Ecology and Evolution 28(7), 389395.Google Scholar
Inizan, M.L., Reduron-Ballinger, M., Roche, H., Tixier, J., 1995. Préhistoire de la pierre taillée, t. 4 - Technologie de la pierre taillée. Meudon, CREP.Google Scholar
Jacquiot, C., Trenard, Y., Dirol, D., 1973. Atlas d’Anatomie des Bois des Angiosperms. Centre Technique du Bois, Paris.Google Scholar
Klaric, L., 2008. Anciennes et nouvelles hypothèses d’interprétation du Gravettien moyen en France : la question de la place des industries à burins du Raysse au sein de la mosaïque gravettienne. Paléo 20, 257276.Google Scholar
Klaric, L., 2013. Faciès lithiques et chronologie du Gravettien du sud du Bassin parisien et de sa marge sud-occidentale. In: Bodu, P., Chehmana, L., Klaric, L., Mevel, L., Soriano S., Teyssandier N. (Eds.), Le Paléolithique supérieur ancien de l’Europe du Nord-Ouest. Réflexions et synthèses à partir d’un projet collectif de recherche sur le centre et le sud du Bassin parisien. Société préhistorique française, Mémoire LVI, Paris, pp. 6187.Google Scholar
Klaus, W., 1978. On the taxonomic significance of tectum sculpture characters in alpine Pinus species. Grana 17, 161166.Google Scholar
Lambeck, K., Yokoyama, Y., Purcell, T., 2002. Into and out of the Last Glacial Maximum: sea-level change during Oxygen Isotope Stage 3 and 2. Quaternary Science Reviews 21, 343360.Google Scholar
Laplace, G., 1964. Essai de Typologie systématique, Annali dell’Università di Ferrara, nuova serie, sezione XV, Paleontologia umana e Paleontologia, I, Supplemento II, Università degli Studi di Ferrara, pp. 86.Google Scholar
Laplace, G., 1966. Recherches sur l’origine et l'évolution des complexes leptolithiques. Ecole Française de Rome, Paris.Google Scholar
Laplace, G., 1977. Il Riparo Mochi ai Balzi Rossi di Grimaldi (Scavi 1939-1949): les industries leptolithiques. Rivista di Scienze Preistoriche 32, 3131.Google Scholar
Lindbo, D.L., Stolt, M.S., Vepraksas, M.J., 2010. Redoximorphic features. In: Stoops, G., Marcelino, V., Mees, F. (Eds.), Interpretation of micromorphological features of soils and regoliths. Elsevier, Amsterdam, pp. 129147.Google Scholar
Lüetscher, M., Boch, R., Sodemann, H., Spötl, C., Cheng, H., Edwards, R.L., Frisia, S., Hof, F., Müller, W., 2015. North Atlantic storm track changes during the Last Glacial Maximum recorded by Alpine speleothems. Nature Communications 6.Google Scholar
Maier, A., Lehmkuhl, F., Ludwig, P., Melles, M., Schmidt, I., Shao, Y., Zeeden, C., Zimmermann, A., 2016. Demographic estimates of hunter-gatherers during the Last Glacial Maximum in Europe against the background of palaeoenvironmental data. Quaternary International 425, 4961.Google Scholar
Marguerie, D., Hunot, J.-Y. 2007. Charcoal analysis and dendrology: data from archaeological sites in north-western France. Journal of Archaeological Science 34, 14171433.Google Scholar
Mihailovic, D., Mihailovic, B., 2007. Considérations sur le Gravettien et l’Epigravettien ancien des Balkans de l’Ouest. Paléo 19, 115130.Google Scholar
Monegato, G., Ravazzi, C., Donegana, M., Pini, R., Calderoni, G., Wick, L., 2007 . Evidence of a two-fold glacial advance during the Last Glacial Maximum in the Tagliamento end moraine system (eastern Alps). Quaternary Research 68, 284302.Google Scholar
Monegato, G., Pini, R., Ravazzi, C., Reimer, P., Wick, L., 2011. Correlation of Alpine glaciation and global glacioeustatic changes through integrated lake and alluvial stratigraphy in N-Italy. Journal of Quaternary Sciences 26(8), 791804.Google Scholar
Monegato, G., Ravazzi, C., Culiberg, M., Pini, R., Bavec, M., Calderoni, G., Jež, J., Perego, R., 2015. Sedimentary evolution and persistence of open forests between the south-eastern Alpine fringe and the Northern Dinarides during the Last Glacial Maximum. Palaeogeography, Palaeoclimatology, Palaeoecology 436, 2340.Google Scholar
Monegato, G., Scardia, G., Hajdas, I., Rizzini, F., Piccin, A., 2017. The Alpine LGM in the boreal icesheets game. Nature Scientific Reports 7.Google Scholar
Müller, U.C., Pross, J., Tzedakis, P.C., Gamble, C., Kotthoff, U., Schmiedl, G., Wulf, S., Christanis, K., 2011. The role of climate in the spread of modern humans into Europe. Quaternary Science Reviews 30, 273279.Google Scholar
Murphy, C.P., 1986. Thin Section Preparation of Soils and Sediments. AB Academic Publishers, Berkhamsted.Google Scholar
Negrino, F., Colombo, M., Cremaschi, M., Serradimigni, M., Tozzi, C., Ghiretti, A., 2017. Estese officine litiche del Paleolitico medio-superiore sui rilievi appenninici di Monte Lama-Castellaccio-Pràrbera (Bardi, Parma). Preistoria e Protostoria dell’Emilia Romagna – I. Studi di Preistoria e Protostoria 3, I. Istituto Italiano di Preistoria e Protostoria, Firenze, pp. 5968.Google Scholar
Negrino, F., Starnini, E., 2006. Modelli di sfruttamento e circolazione delle materie prime per l’industria litica scheggiata tra Paleolitico inferiore ed Età del Rame in Liguria. In Cocchi Genick, D. (Ed.), Materie prime e scambi nella preistoria italiana: Atti XXXIX Riunione Scientifica IIPP. Istituto Italiano di Preistoria e Protostoria, Firenze, pp. 283298.Google Scholar
Olive, M., 2017. Campo delle Piane: un habitat de plein air épigravettien dans la Vallée du Gallero (Abruzzes, Italie centrale). École française de Rome, 526.Google Scholar
Onoratini, G., Simon, P., Negrino, F., Cauche, D., Moullé, P. E., Arellano, A., Borgia, V., Voytek, B., Arrighi, S., 2011. Du Sud de la montagne de Lure aux sépultures de Grimaldi: le silex zoné stampien dit “du Largue”. Matériau de prestige du Paléolithique supérieur liguro-provençal. Bulletin du Musée d’Anthropologie Préhistorique de Monaco 51, 5174.Google Scholar
Palma di Cesnola, A., 1993. Il Paleolitico superiore in Italia: introduzione allo studio. Garlatti & Razzai, Firenze.Google Scholar
Palma di Cesnola, A. (Ed.), 2004. Paglicci. L’Aurignaziano e il Gravettiano antico. Grenzi ed., Foggia.Google Scholar
Palmadi Cesnola, A di Cesnola, A. 2006. L’Aurignacien et le Gravettien ancien de la grotte Paglicci au Mont Gargano. L’Anthropologie 110(3), 355370.Google Scholar
Peresani, M., Romandini, M., Duches, R., Jéquier, C., Nannini, N., Pastoors, A., Picin, A., Schmidt, I., Vaquero, M., Weniger, G.C., 2014, New evidence for the Mousterian and Gravettian at Rio Secco Cave, Italy. Journal of Field Archaeology 39/4, 401416.Google Scholar
Pesesse, D., 2008. Le statut de la fléchette au sein des premières industries gravettiennes. Paléo 20, 4558.Google Scholar
Pini, R., Ravazzi, C., Reimer, P., 2010. The vegetation and climate history of the last glacial cycle in a new pollen record from Lake Fimon (southern Alpine foreland, N-Italy). Quaternary Science Reviews 29, 31153137.Google Scholar
Pini, R., Badino, F., Brunetti, M., Champvillair, E., Vallè, F., Ravazzi, C., De Amicis, M., 2017a. Altitudinal training sets of pollen rain – vegetation cover and modelled climate as a tool for the interpretation of paleoecological records. Ecological Questions 26, 5760.Google Scholar
Pini, R., Ravazzi, C., Raiteri, L., Guerreschi, A., Castellano, L., Comolli, R., 2017b. From pristine forests to high-altitude pastures: an ecological approach to prehistoric human impact on vegetation and landscapes in the western Italian Alps. Journal of Ecology 105, 15801597.Google Scholar
Porraz, G., Negrino, F., 2008. Espaces économiques et approvisionnement minéral au Paléolithique Moyen dans l’aire liguro-provençale. Bulletin du Musée Anthropologique Préhistorique de Monaco, suppl. 1, 2939.Google Scholar
Porraz, G., Simon, P., Pasquini, A. 2010. Identité technique et comportements économiques des groupes proto-aurignaciens à la grotte de l’Observatoire (principauté de Monaco). Gallia Préhistoire 52, 3359.Google Scholar
Punt, W., Blackmore, S., Clarke, G.C.S., Hoen, P.P., Stafford, P.J. (Eds.), 1976-2009. The Northwest European Pollen Flora, voll. I-IX. Elsevier, Amsterdam.Google Scholar
Rasmussen, S.O., Bigler, M., Blockley, S.P., Blunier, T., Buchardt, S.L., Clausen, H.B., Cvijanovic, I., Dahl-Jensen, D., Johnsen, S.J., Fischer, H., et al., 2014. A stratigraphic framework for abrupt climatic changes during the Last Glacial period based on three synchronized Greenland ice-core records: refining and extending the INTIMATE event stratigraphy. Quaternary Science Reviews 106, 1428.Google Scholar
Ravazzi, C., Orombelli, G., Tanzi, G., & Climex group, 2004. An outline of the flora and vegetation of Adriatic basin (Northern Italy and eastern side of the Apennine) during the Last Glacial Maximum. In: Antonioli, F., Vai, G.B. (Eds.), Litho-paleoenvironmental maps of Italy during the Last Two Climatic Extremes. Explanatory Notes. 32nd International Geological Congress, Firenze, pp. 1520.Google Scholar
Ravazzi, C., Deaddis, M., De Amicis, M., Marchetti, M., Vezzoli, G., Zanchi, A., 2012. The last 40 kyr evolution of the Central Po Plain between the Adda and Serio rivers. Géomorphologie, relief, processus, environnement 2, 131154.Google Scholar
Ravazzi, C., Garozzo, L., Deaddis, M., De Amicis, M., Marchetti, M., Pini, R., Vezzoli, G., Zanchi, A. (2018). Palaeoenvironment and vegetation history in the Central Po Plain (Northern Italy) between 33 – 30 ka cal BP under the impact of millennial climate change. Alpine and Mediterranean Quaternary 31, 93–97.Google Scholar
Reille, M., 1992-1998. Pollen et spores d’Europe et d’Afrique du Nord, Vol. I + Suppl. I-II. Université de Marseille, Marseille.Google Scholar
Reimer, P.J., Bard, E., Bayliss, A., Beck, J.W., Blackwell, P.G., Bronk Ramsey, C., Buck, C.E., Cheng, H., Edwards, R.L., Friedrich, M., et al., 2013. IntCal13 and Marine13 Radiocarbon Age Calibration Curves, 0-50,000 Years cal BP. Radiocarbon 55, 18691887.Google Scholar
Rellini, I., Firpo, M., Martino, G., Riel-Salvatore, J., Maggi, R., 2013. Climate and environmental changes recognized by micromorphology in Paleolithic deposits at Arene Candide (Liguria, Italy). Quaternary International 315, 4255.Google Scholar
Renssen, H., Seppä, H., Crosta, X., Goosse, H., Roche, D. M., 2012. Global characterization of the Holocene thermal maximum. Quaternary Science Reviews 48, 719.Google Scholar
Reynolds, N., Lisitsyn, S.L., Sablin, M.V., Barton, N., Higham, T.F.G., 2015. Chronology of the European Russian Gravettian: newradiocarbon dating results and interpretation. Quartär 62, 121132.Google Scholar
Saccani, A., Salvoni, M., 2015. Gioielli della flora delle alte valli del Taro e Ceno (Appennino Emiliano, Parma). Libreria Palatina ed., Parma.Google Scholar
Sbrocco, E.J., 2014. Paleo-MARSPEC: gridded ocean climate layers for the mid-Holocene and Last Glacial Maximum. Ecology 95(6), 1710.Google Scholar
Schmidt, I., Bradtmöller, M., Kehl, M., Pastoors, A., Tafelmaier, Y., Weninger, B., Weniger, G.-Ch., 2012. Rapid climate change and variability of settlement patterns in Iberia during the Late Pleistocene. Quaternary International 274, 179204.Google Scholar
Schweingruber, F.H., 1990. Microscopic Wood Anatomy; Structural Variability of Stems and Twigs in Recent and Subfossil Woods from Central Europe. 3rd Ed. Eidgenössische Forschungsanstalt WSL, Birmensdorf.Google Scholar
Silvestrini, M., Peresani, M., Muratori, S., 2005. Frequentazioni antropiche allo spartiacque appenninico nella fase antica del Paleolitico superiore: il sito di Fonte delle Mattinate (Altopiano di Colfìorito). Atti della XXXVIII Riunione Scientifica - Preistoria e Protostoria delle Marche. Istituto Italiano di Preistoria e Protostoria, Firenze, pp. 69-79.Google Scholar
Simonet, A., 2011. La Pointe des Vachons: nouvelles approches d’un fossile directeur controversé du Gravettien à partir des exemplaires du niveau IV de la grotte d’Isturitz (Pyrénées-Atlantiques, France) et des niveaux 4 des abris 1 e 2 des Vachons (Charante, France). Paléo 22, 271298.Google Scholar
Simonet, A., 2017. Gravettians at Brassempouy (Landes, France), 30,000 BP: a semi-sedentary territorial organization? World Archaeology 49(5), 648665.Google Scholar
Sinitsyn, A., 2015. Perspectives on the Palaeolithic of Eurasia: Kostenki and related sites. In: Sanz, N. (Ed), Human Origin Sites and the World Heritage Convention in Eurasia. World Heritage Papers, 41, HEADS Programme on Human Evolution 4, UNESCO, Volume I, pp. 163–189.Google Scholar
Slimak, L., Bressy, C., Guendon, J.L., Montoya, C., Ollivier, V., Renault, S., 2005. Exploitation paléolithique des silex oligocènes en haute Provence (France). Caractérisation des matières premières et processus d’acquisition. Comptes Rendus Palevol 4, 359367.Google Scholar
Spötl, C., Reimer, P., Starnberger, R., Reimer, R.W. 2013. A new radiocarbon chronology of Baumkirchen, stratotype for the onset of the Upper Würmian in the Alps. Journal of Quaternary Science 28(6), 552558.Google Scholar
Stockmarr, J., 1971. Tablets with spores used for absolute pollen analysis. Pollen et Spores 13, 615620.Google Scholar
Stoops, G., 2003. Guidelines for analysis and description of soil and regolith thin sections. Soil Science Society of America, Madison.Google Scholar
Stoops, G., Eswaran, H., 1985. Morphological characteristics of wet soils. In: International Rice Research Institute (Ed.) Wetland Soils: characterization, classification and utilization. Manila, pp. 177–189.Google Scholar
Straus, L.G., Bicho, N., Winegardner, A.C., 2000. The Upper Palaeolithic settlement of Iberia: first-generation maps. Antiquity 74, 553566.Google Scholar
Svenning, J.-C., Normand, S., Kageyama, M., 2008. Glacial refugia of temperate trees in Europe: insights from species distribution modelling. Journal of Ecology 96, 11171127.Google Scholar
Tagliacozzo, A., Zeppieri, F., Fiore, I., Spinapolice, E., Del Lucchese, A., 2011. Archaeozoological evidence of subsistence strategies during the Gravettian at Riparo Mochi (Balzi Rossi, Ventimiglia, Imperia - Italy). Quaternary International 252, 142154.Google Scholar
Talamo, S., Peresani, M., Romandini, M., Duches, R., Jéquier, C., Nannini, N., Pastoors, A., Picin, A., Vaquero, M., Weniger, G.C., Hublin, J.J., 2014. Detecting human presence at the border of the northeastern Italian Pre-Alps. 14C dating at Rio Secco Cave as expression of the first Gravettian and the late Mousterian in the northern Adriatic region. PLosOne 9(4), e95376.Google Scholar
Tallavaara, M., Luoto, M., Korhonen, N., Järvinen, H., Seppä, H., 2015. Human population dynamics in Europe over the last glacial maximum. Proc. Natl. Acad. Sci. 112 (27), 82328237.Google Scholar
Taller, A., Floss, H., 2011. Die lithische Technologie der Gravettien-Fundstelle Azé-Camping de Rizerolles (Dép. Saône-et-Loire). Archäologisches Korrespondenzblatt, Jahrgang 41 (2), 155171.Google Scholar
Tillet, Th., 2002. Les Alpes et le Jura. Quaternaire et Préhistoire ancienne. Ed. GB.Google Scholar
Tomasso, A., Binder, D., Martino, G., Porraz, G., Simon, P., 2016. Entre Rhône et Apennins : le référentiel MP-ALP, matières premières de Provence et de l’arc Liguro-provençal. In: Tomasso, A., Binder, D., Martino, G., Naudinot, N. (Eds.), Ressources lithiques, productions et transferts entre Alpes et Méditerranée. Société préhistorique française, Paris, pp. 1144.Google Scholar
Tomasso, A., Porraz, G., 2016. Hunter-Gatherer Mobility and Embedded Raw-Material Procurement Strategies in the Mediterranean Upper Paleolithic. Evolutionary Anthropology 25, 164174.Google Scholar
van der Knaap, W. O., van Leeuwen, J. F., Ammann, B., 2001. Seven years of annual pollen influx at the forest limit in the Swiss Alps studied by pollen traps: relations to vegetation and climate. Review of Palaeobotany and Palynology 117, 3152.Google Scholar
Van Geel, B., 1978. A palaeoecological study of Holocene peat bog sections in Germany and The Netherlands based on the analysis of pollen, spores and macro- and microremains of fungi, algae, cormophytes and animals. Review of Palaeobotany and Palynology 25, 1120.Google Scholar
Walter, H., Breckle, S.W., 1986. Ökologie der Erde. Bd. 3: Spezielle Ökologie der Gemäßigten und Arktischen Zonen Euro-Nordasiens. Gustav Fischer Verlag, Stuttgart.Google Scholar
Wick, L., 2000. Full- to late-glacial vegetation and climate changes and evidence of glacial refugia in the south-eastern Alps (Italy). In: Colombaroli, D., Kaltenrieder, P., Vescovi E., Tinner, W. (Eds), XXX International Moor- Excursion 2006 - Northern and Central Italy, pp. 5355.Google Scholar
Wierer, U., 2013. Variability and standardization: The early Gravettian lithic complex of Grotta Paglicci, Southern Italy. Quaternary International 288, 215238.Google Scholar
Willis, K.J., Rudner, E., Sümegi, P., 2000. The full-glacial forests of central and southeastern Europe. Quaternary Research 53, 203213.Google Scholar
Zickel, M., Becker, D., Verheul, J., Yener, Y., Willmes, C., 2016. Paleocoastlines GIS dataset. CRC806-Database, doi: 10.5880/SFB806.20.Google Scholar
Supplementary material: File

Peresani et al. supplementary material

Peresani et al. supplementary material 1

Download Peresani et al. supplementary material(File)
File 19.9 KB