Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-15T19:21:14.521Z Has data issue: false hasContentIssue false

Holocene Vegetation History from Fossil Rodent Middens near Arequipa, Peru

Published online by Cambridge University Press:  20 January 2017

Camille A. Holmgren
Affiliation:
Department of Geosciences, University of Arizona, Tucson, Arizona, 85721,, E-mail: [email protected]
Julio L. Betancourt
Affiliation:
U.S. Geological Survey, 1675 W. Anklam Rd. Tucson, Arizona, 85745, USA
Kate Aasen Rylander
Affiliation:
U.S. Geological Survey, 1675 W. Anklam Rd. Tucson, Arizona, 85745, USA
Jose Roque
Affiliation:
Department of Monocotiledóneas y Gimnospermas, Museo de Historia Natural de la Universidad Nacional Mayor de San Marcos, Avenida Arenales 1256, Jesús Marı́a, Apartado, Lima, 14-0434, Peru
Oscar Tovar
Affiliation:
Department of Monocotiledóneas y Gimnospermas, Museo de Historia Natural de la Universidad Nacional Mayor de San Marcos, Avenida Arenales 1256, Jesús Marı́a, Apartado, Lima, 14-0434, Peru
Horacio Zeballos
Affiliation:
Departamento de Ciencias Biológicas y Agropecuarias, Universidad de San Agustı́n, Avenida Carrión, Arequipa, Peru
Eliana Linares
Affiliation:
Departamento de Ciencias Biológicas y Agropecuarias, Universidad de San Agustı́n, Avenida Carrión, Arequipa, Peru
Jay Quade
Affiliation:
Department of Geosciences, University of Arizona, Tucson, Arizona, 85721

Abstract

Rodent (Abrocoma, Lagidium, Phyllotis) middens collected from 2350 to 2750 m elevation near Arequipa, Peru (16°S), provide an ∼9600-yr vegetation history of the northern Atacama Desert, based on identification of >50 species of plant macrofossils. These midden floras show considerable stability throughout the Holocene, with slightly more mesophytic plant assemblages in the middle Holocene. Unlike the southwestern United States, rodent middens of mid-Holocene age are common. In the Arequipa area, the midden record does not reflect any effects of a mid-Holocene mega drought proposed from the extreme lowstand (100 m below modern levels, >6000 to 3500 yr B.P.) of Lake Titicaca, only 200 km east of Arequipa. This is perhaps not surprising, given other evidence for wetter summers on the Pacific slope of the Andes during the middle Holocene as well as the poor correlation of summer rainfall among modern weather stations in the central Andes-Atacama Desert. The apparent difference in paleoclimatic reconstructions suggests that it is premature to relate changes observed during the Holocene to changes in El Niño Southern Oscillation modes.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baied, C.A, and Wheeler, J.C Evolution of high Andean puna ecosystems: Environment, climate, and culture change over the last 12,000 years in the Central Andes. Mountain Research and Development 13, (1993). 145 156.Google Scholar
Baucom, P.C, and Rigsby, C.A Climate and lake-level history of the northern Altiplano, Bolivia, as recorded in Holocene sediments of the Rio Desaguadero. Journal of Sedimentary Research 69, (1999). 597 611.Google Scholar
Betancourt, J. L, Van Devender, T. R, and Martin, P. S, Eds, (1990). Packrat Middens: The Last 40,000 Years of Biotic Change, Univ. of Arizona Press, Tucson.Google Scholar
Betancourt, J.L, Pierson, E.A, Rylander, K.A, Fairchild-Parks, J.A, and Dean, J.S Influence of history and climate on New Mexico piñon-juniper woodlands. USDA Forest Service General Technical Report RM-23, (1993). 42 62.Google Scholar
Betancourt, J.L, Rylander, K.A, Peñalba, C, and McVickar, J.L Late Quaternary vegetation history of Rough Canyon, south-central New Mexico, USA. Palaeogeography, Palaeoclimatology, Palaeoecology. 165, (2000). 71 95.CrossRefGoogle Scholar
Betancourt, J.L, Latorre, C, Rech, J.A, Quade, J, and Rylander, K.A A 22,000-yr record of monsoonal precipitation from northern Chile's Atacama Desert. Science 289, (2000). 1542 1546.Google Scholar
Cane, M.A, Clement, A, Gagan, M.K, Ayliffe, L.K, and Tudhope, S ENSO through the Holocene, depicted in corals and a model simulation. Pages Newsletter 8, (2000). 3 7.Google Scholar
Cole, J A slow dance for El Niño. Science 291, (2001). 1496 1497.Google Scholar
Cross, S.L, Baker, P.A, Seltzer, G.O, Fritz, S.C, and Dunbar, R.B A new estimate of the Holocene lowstand level of Lake Titicaca, central Andes, and implications for tropical palaeohydrology. The Holocene 10, (2000). 21 32.Google Scholar
DeVries, T.J, and Wells, L.E Thermally-anomalous Holocene molluscan assemblages from coastal Peru: Evidence for paleogeographic, not climatic change. Palaeogeography, Palaeoclimatology, Palaeoecology 81, (1990). 11 32.Google Scholar
Fontugne, M, Usselmann, P, Lavallée, D, Julien, M, and Hatté, C El Niño variability in the coastal desert of southern Peru during the mid-Holocene. Quaternary Research 52, (1999). 171 179.CrossRefGoogle Scholar
Hansen, B.C.S, Seltzer, G.O, Wright, H.E Jr. Late Quaternary vegetational change in the central Peruvian Andes. Palaeogeography, Palaeoclimatology, Palaeoecology 109, (1994). 263 285.Google Scholar
Keefer, D.K, deFrance, S.D, Moseley, M.E, Richardson, J.B III, Satterlee, D.R, and Day-Lewis, A Early maritime economy and El Niño events at Quebrada Tacahuay, Peru. Science 284, (1998). 1833 1835.Google Scholar
Lenters, J.D, and Cook, K.H On the origin of the Bolivian high and related circulation features of the South American climate. Journal of the Atmospheric Sciences 54, (1997). 656 677.Google Scholar
Lenters, J.D, and Cook, K.H Summertime precipitation variability over South America: Role of the large-scale circulation. Monthly Weather Review 127, (1999). 409 431.Google Scholar
Linares, E.L Estructura vegetacional de la transecta Yura–Chivay (2600–4800 M.S.N.M.) Arequipa 1987–. (1996). Universidad de san Agustin, Google Scholar
Miller, A The climate of Chile. Schwerdfeger, W Climates of Central and South America. (1976). Elsevier, Amsterdam. 113 145.Google Scholar
Pearson, O.P, and Ralph, C.P The diversity and abundance of vertebrates along an altitudinal gradient in Peru. Memorias del Museo de Historia Natural 18, (1978). 5 80.Google Scholar
Pizzimenti, J.J, and De Salle, R Diet and morphometric variation in some Peruvian rodent communities: The effect of feeding strategy on evolution. Biological Journal of the Linnean Society 13, (1980). 263 285.Google Scholar
Placzek, C, Quade, J, and Betancourt, J.L Holocene lake-level fluctuations of Lake Aricota, southern Peru. Quaternary Research. 56, (2001). 181 Google Scholar
Rodbell, D.T, Seltzer, G.O, Anderson, D.A, Abbott, M.B, Enfield, D.B, and Newman, J.H An ∼15,000-year record of El Niño-driven alluviation in southwestern Ecuador. Science 283, (1999). 516 519.CrossRefGoogle ScholarPubMed
Rowe, H. D, Dunbar, R. B, Mucciarone, D. A, Seltzer, G. O, Baker, P. A, and Fritz, S. (in press), Insolation, moisture balance and climate change on the South American Altiplano since the Last Glacial Maximum, Climate Change.Google Scholar
Sandweiss, D.H, Richardson, J.B III, Reitz, E.J, Rollins, H.B, and Maasch, K.A Geoarcheological evidence from Peru for a 5000 years B. P. onset of El Niño. Science 273, (1996). 1531 1533.Google Scholar
Schwalb, A, Burns, S.J, and Kelts, K Holocene environments from stable isotope stratigraphy of ostracods and authigenic carbonate in Chilean Altiplano lakes. Palaeogeography, Palaeoclimatology, Palaeoecology 148, (1999). 153 168.Google Scholar
Spaulding, W.G Environmental change, ecosystem responses, and the late Quaternary development of the Mojave Desert. Steadman, D.W, and Mead, J.I Late Quaternary Environment and Deep History: A Tribute to Paul S. Martin. (1995). The Mammoth Site of Hot Springs, South Dakota, Inc, Hot Springs. 139 164.Google Scholar
Spaulding, W.G, Betancourt, J.L, Croft, L.K, and Cole, K.L Packrat middens: Their composition and methods of analysis. Betancourt, J.L, VanDevender, T.R, and Martin, P.S Packrat Middens: The Last 40,000 Years of Biotic Change. (1990). Univ. of Arizona Press, Tucson. 59 84.Google Scholar
Steppan, S.J Phylogenetic relationships and species limits within Phyllotis (Rodentia: Sigmodontinae): Concordance between mtDNA sequence and morphology. Journal of Mammology 79, (1998). 573 593.Google Scholar
Stuiver, M, and Reimer, P.J Extended 14C database and revised CALIB radiocarbon calibration program. Radiocarbon 35, (1993). 215 230.Google Scholar
Thompson, L.G, Davis, M.E, Mosley-Thompson, E, Sowers, T.A, Henderson, K.A, Zagorodnov, V.S, Lin, P.-N, Mikhalenko, V.N, Campen, R.K, Bolzan, J.F, Cole-Dai, J, and Francou, B A 25,000-yr tropical climate history from Bolivian ice cores. Science 282, (1998). 1858 1864.Google Scholar
Webb, R.H, and Betancourt, J.L The spatial and temporal distribution of radiocarbon ages from packrat middens. Betancourt, J.L, Van Devender, T.R, and Martin, P.S Packrat Middens: The Last 40,000 Years of Biotic Change. (1990). Univ. of Arizona Press, Tucson. 59 84.Google Scholar
Wirrmann, D, and De Oliveira Almeida, L.F Low Holocene level (7700 to 3650 years ago) of Lake Titicaca (Bolivia). Palaeogeography, Palaeoclimatology, Palaeoecology 59, (1987). 315 323.CrossRefGoogle Scholar
Ybert, J.P Ancient lake environments as deduced from pollen analysis. Dejoux, C, and Iltis, A Lake Titicaca, A Synthesis of Limnological Knowledge. (1992). Kluwer Academic, Dordrecht. 49 62.Google Scholar
Zhou, J, and Lau, K.-M Does a monsoon climate exist over South America?. Journal of Climate 11, (1998). 1020 1040.2.0.CO;2>CrossRefGoogle Scholar