Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-23T23:56:08.091Z Has data issue: false hasContentIssue false

Holocene vegetation change in the northern Peten and its implications for Maya Prehistory

Published online by Cambridge University Press:  20 January 2017

David Wahl*
Affiliation:
Department of Geography, University of California, Berkeley, CA 94702-4740, USA
Roger Byrne
Affiliation:
Department of Geography, University of California, Berkeley, CA 94702-4740, USA
Thomas Schreiner
Affiliation:
Department of Geography, University of California, Berkeley, CA 94702-4740, USA
Richard Hansen
Affiliation:
American Indian Studies Program, Department of Anthropology, Idaho State University, Campus Box 8005 Pocatello, ID 83209-8005, USA
*
*Corresponding author. Fax: +1 510 642 3370. E-mail address:[email protected] (D. Wahl).

Abstract

An ∼8400 cal yr record of vegetation change from the northern Peten, Guatemala, provides new insights into the environmental history of the archaeological area known as the Mirador Basin. Pollen, loss on ignition, and magnetic susceptibility analyses indicate warm and humid conditions in the early to mid-Holocene. Evidence for a decrease in forest cover around 4600 cal yr B.P. coincides with the first appearance of Zea mays pollen, suggesting that human activity was responsible. The period between 3450 cal yr B.P. and 1000 cal yr B.P. is characterized by a further decline in forest pollen types, includes an abrupt increase in weedy taxa, and exhibits the highest magnetic susceptibility values since the early Holocene, all of which suggest further agricultural disturbance in the watershed. A brief drop in disturbance indicators around 1800 cal yr B.P. may represent the Preclassic abandonment of the area. Changing pollen frequencies around 1000 cal yr B.P. indicate a cessation of human disturbance, which represents the Late Classic collapse of the southern Maya lowlands.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bauer, R.L., Orvis, K.H., Edlund, E.G., (1991). CalPalyn Pollen Diagram Program. University of California, Berkeley Palynology and Paleobotany Laboratory, 115.Google Scholar
Beach, T., Dunning, N.P., Luzzadder-Beach, S., Scarborough, V., (2003). Depression soils in the lowland tropics of northwestern Belize: anthropogenic and natural origins. Gomez-Pampa, A., Allen, M.F., Fedick, S.L., Jimenez-Osornio, J.J. The Lowland Maya Area: Three Millennia at the Human–Wildland Interface Food Products Press, Binghamton, NY. 139174.Google Scholar
Binford, M.W., Brenner, M., Whitmore, T.J., Higuera-Gundy, A., Deevey, E.S., Leyden, B.W., (1987). Ecosystems, paleoecology and human disturbance in subtropical and tropical America. Quaternary Science Reviews 6, 115128.CrossRefGoogle Scholar
Brenner, M., Leyden, B., Binford, M.W., (1990). Recent sedimentary histories of shallow lakes in the Guatemalan savannas. Journal of Paleolimnology 4, 239252.Google Scholar
Byrne, R., Turton, C., (1998). Experimental pollen studies in the Crawford lake region. Finlayson, W.D. Iroquian Peoples of the Land of Rocks and Water, A.D. 1000–1650: A Study in Settlement Archaeology London Museum of Archaeology, London. 91107.Google Scholar
Colinvaux, P.A., Oliveira, P.E.d., Moreno Patiño, J.E., (1999). Amazon Pollen Manual and Atlas = Manual e Atlas Palinológico da Amazônia. Harwood Academic Publishers, Amsterdam.Google Scholar
Cooke, C.W., (1931). Why the Maya cities of the Petén district, Guatemala, were abandoned. Journal of Washington Academy of Science 21, 283287.Google Scholar
Curtis, J.H., Hodell, D.A., Brenner, M., (1996). Climate Variability on the Yucatan Peninsula (Mexico) during the Past 3500 Years, and Implications for Maya Cultural Evolution. Quaternary Research 46, 3747.Google Scholar
Curtis, J.H., Brenner, M., Hodell, D.A., Balser, R.A., Islebe, G.A., Hooghiemstra, H., (1998). A multi-proxy study of Holocene environmental change in the Maya Lowlands of Peten, Guatemala. Journal of Paleolimnology 19, 139159.Google Scholar
Dahlin, B.H., (1983). Climate and prehistory on the Yucatan peninsula. Climatic Change 5, 245263.Google Scholar
Dahlin, B.H., (1984). A Colossus in Guatemala: the preclassic Maya city of El Mirador. Archaeology 37, 1825.Google Scholar
Dean, W.E., (1974). Determination of carbonate and organic matter in calcareous sediments and sedimentary rocks by loss on ignition. Journal of Sedimentary Petrology 44, 242248.Google Scholar
Deevey, E.S., Gross, M.S., Hutchinson, G.E., Kraybill, H.L., (1954). The natural C-14 contents of materials from hard-water lakes. Proceedings of the National Academy of Sciences 40, 285288.CrossRefGoogle Scholar
Deevey, E.S., Rice, D.S., Rice, P.M., Vaughan, H.H., Brenner, M., Flannery, M.S., (1979). Mayan urbanism: impact on a tropical karst environment. Science 206, 298306.Google Scholar
Dunning, N., Rue, D.J., Beach, T., Covich, A., Traverse, A., (1998). Human-environment interactions in a tropical watershed: the paleoecology of Laguna Tamarindito, El Peten, Guatemala. Journal of Field Archaeology 25, 139151.Google Scholar
Dunning, N.P., Luzzadder-Beach, S., Beach, T., Jones, J.G., Scarborough, V., Culbert, P.T., (2002). Arising from the Bajos: the evolution of a neotropical landscape and the rise of the Maya civilization. Annals Of The Association Of American Geographers 92, 267283.CrossRefGoogle Scholar
Faegri, K., Iverson, J., (1989). Textbook of pollen analysis. Wiley, New York.Google Scholar
Hansen, B.C.S., (1990). Pollen stratigraphy of Laguna de Cocos. Pohl, M.D. Ancient Maya Wetland Agriculture: Excavations on Albion Island, Northern Belize Westview Press, San Francisco. 155186.Google Scholar
Hansen, R.D., (1990). Excavations in the Tigre complex, El Mirador, Petén, Guatemala. New World Archaeological Foundation Brigham Young University, Provo, Utah.Google Scholar
Hansen, R.D., (1991). The road to Nakbe. Natural 814.Google Scholar
Hansen, R.D., (1992). El Proceso cultural de Nakbe y el area del Peten Nor-Central: Las Epocas Tempranas. Laporte, J.P., Escobedo, H.L., de Brady, S.V. V Simposio de Investigaciones en Guatemala. Ministerio de Cultura y Deportes, Instituto de Antropología e Historia de Guatemala, Asociación Tikal, Museo Nacional de Arqueología y Etnología 8196.Google Scholar
Hansen, R.D., (1994). Las dinámicas culturales y ambientales de los orígines Mayas: estudios recientes del sitio arqueológico Nakbe. Laporte, J.P., Escobedo, H.L. VII Simposio Arqueológico de Guatemala. Ministerio de Cultura y Deportes, Instituto de Antropología e Historia de Guatemala, Asociación Tikal, Museo Nacional de Arqueología y Etnología 369387.Google Scholar
Hansen, R.D., (1995). Early Environmental Impact: The Ecological Consequences of Incipient Maya Settlement. National Geographic Society, Wahington DC. 102.Google Scholar
Hansen, R.D., (1998). Continuity and disjunction: the pre-classic antecedents of classic Maya architecture. Houston, S.D. Function and Meaning in Classic Maya Architecture Dumbarton Oaks, Washington DC. 49122.Google Scholar
Hansen, R.D., Bozarth, S., Jacob, J., Wahl, D., Schreiner, T., (2002). Climatic and environmental variability in the rise of Maya civilization: a preliminary perspective from the northern Peten. Ancient Mesoamerica 13, 273295.Google Scholar
Hartshorn, G.S., (2000). Tropical and subtropical vegetation of mesoamerica. Barbour, M.G., Billings, W.D. North American Terrestrial Vegetation Cambridge University Press, Cambridge, U.K.. 623659.Google Scholar
Heiri, O., Lotter, A.F., Lemcke, G., (2001). Loss on ignition as a method for estimating organic and carbonate content in sediments: reproducibility and comparability of results. Journal of Paleolimnology 25, 101110.Google Scholar
Hodell, D.A., Curtis, J.H., Jones, G.A., Higuera-Gundy, A., Brenner, M., Binford, M.W., Dorsey, K.T., (1991). Reconstruction of Caribbean climate change over the past 10,500 years. Nature 352, 790793.CrossRefGoogle Scholar
Hodell, D.A., Curtis, J.H., Brenner, M., (1995). Possible role of climate in the collapse of Classic Maya civilization. Nature 375, 391394.Google Scholar
Hodell, D.A., Brenner, M., Curtis, J.H., Guilderson, T., (2001). Solar forcing of drought frequency in the Maya lowlands. Science 292, 13671370.Google Scholar
Horn, S.P. (1983). “Late quaternary vegetation change in western Costa Rica: pollen evidence from deep sea drilling project site 565.. ” Unpublished Thesis M A in Geography-University of California Berkeley June 1983 thesis..Google Scholar
Huntington, E., (1917). Maya civilization and climatic changes. Hodge, F.W. Proceedings of the Nineteenth International Congress of Americanists 150164.Washington D.C.Google Scholar
Irwin, H., Barghoorn, E.S., (1965). Identification of the Pollen of Maize, Teosinte and Tripsacum by Phase Contrast Microscopy. Botanical Museum Leaflets, Harvard University 21, 3747.CrossRefGoogle Scholar
Islebe, G.A., Hooghiemstra, H., Brenner, M., Curtis, J., Hodell, H., (1996). A Holocene vegetation history from lowland Guatemala. The Holocene 6, 265271.Google Scholar
Jacob, J.S., (1994). Evidencias para cambio ambiental en Nakbe, Guatemala. Laporte, J.P., Escobedo, H.L. VII Simposio de Investigaciones Arqueologicas en Guatemala. Ministerio de Cultura y Deportes, Instituto de Antropología e Historia de Guatemala, Asociación Tikal, Museo Nacional de Arqueologia y Etnologia, Guatemala 275280.Google Scholar
Jacob, J.S., (1995a). Ancient Maya Wetland agricultural fields in Cobweb swamp, Belize: construction, chronology, and function. Journal of Field Archaeology 22, 175190.Google Scholar
Jacob, J.S., (1995b). Archaeological pedology in the Maya lowlands. Collins, M.E., Carter, B.J., Gladfelter, B.G., Southard, R.J. Pedological Perspectives in Archaeological Research. SSSA Special Publication Soil Science Society of America, Inc., Madison. 5180.Google Scholar
Jacob, J.S., Hallmark, C.T., (1996). Holocene stratigraphy of Cobweb Swamp, a Maya wetland in northern Belize. Geological Society of America Bulletin 108, 883891.Google Scholar
Johnston, K.J., Breckenridge, A.J., Hansen, B.C., (2001). Paleoecological evidence of an early postclassic occupation in the southwestern Maya lowlands: Laguna Las Pozas, Guatemala. Latin American Antiquity 12, 149166.CrossRefGoogle Scholar
Jones, J.G., (1991). "Pollen Evidence of Prehistoric Forest Modification and Maya Cultivation in Belize.". Unpublished M.A. Thesis, Texas A and M University.Google Scholar
Leyden, B.W., (1984). Guatemalan forest synthesis after Pleistocene aridity. Proceedings of the National Academy of Science 81, 48564859.Google Scholar
Leyden, B.W., (1987). Man and climate in the Maya lowlands. Quaternary Research 28, 407414.Google Scholar
Leyden, B.W., (2002). Pollen evidence for climatic variability and cultural disturbance in the Maya lowlands. Ancient Mesoamerica 13, 85101.Google Scholar
Leyden, B.W., Brenner, M., Hodell, D.A., Curtis, J.H., (1993). Late pleistocene climate in the central American lowlands. Swart, P.K. Climate Change in Continental Isotopic Records Geophysical Monograph vol. 78, American Geophysical Union, Washington D.C.. 165178.Google Scholar
Leyden, B.W., Brenner, M., Hodell, D.A., Curtis, J.H., (1994). Orbital and internal forcing of climate on the Yucatan Peninsula for the past ca. 36 ka. Palaeogeography, Palaeoclimatology, Palaeoecology 109, 193210.Google Scholar
Leyden, B.W., Brenner, M., Whitmore, T., Curtis, J.H., Piperno, D.R., Dahlin, B.H., (1996). A record of long- and short-term climatic variation from northwest Yucatán: cenote San José Chulchacá. Fedick, S.L. The Managed Mosaic: Ancient Maya Agriculture and Resource Use University of Utah Press, Salt Lake City. 3050.Google Scholar
Leyden, B.W., Brenner, M., Dahlin, B.H., (1998). Cultural and climatic history of Cobá, a lowland Maya City in Quintana Roo, Mexico. Quaternary Research 49, 111122.CrossRefGoogle Scholar
Lozano García, S., (1979). Atlas de Polen de San Luis Potosí, Mexico. Pollen et Spores 21, 287336.Google Scholar
Ludlow-Wiechers, B., Ayala-Nieto, M.L., (1984). Polen de plantas utilizadas en mesoamerica. Darwin, S.P., Welden, A.L. Biogeography of Mesoamerica. Tulane Studies in Zoology and Botany, Merida, Yucatan, Mexico 155172.Google Scholar
Lundell, C.L., (1937). The Vegetation of Peten. Carnegie Institution of Washington, Washington D.C.. 478.Google Scholar
Matheny, R.T., (1987). El mirador: an early Maya metropolis uncovered. National Geographic 317339.Google Scholar
Pohl, M.D., Pope, K.O., Jones, J.G., Jacob, J.S., Piperno, D.R., deFrance, S.D., Lentz, D.L., Gifford, J.A., Danforth, M.E., Josserand, J.K., (1996). Early agriculture in the Maya lowlands. Latin American Antiquity 7, 355372.CrossRefGoogle Scholar
Pope, K.O., Pohl, M.E., Jones, J.G., Lentz, D.L., von Nagy, C., Vega, F.J., Quitmyer, I.R., (2001). Origin and environmental setting of ancient agriculture in the lowlands of mesoamerica. Science 292, 13701373.Google Scholar
Raynor, G.S., Ogden, E.C., Hayes, J.V., (1972). Dispersion and deposition of corn Pollen from experimental sources. Agronomy Journal 64, 420427.CrossRefGoogle Scholar
Romero Zetina, J.J., Schreiner, T., (1998). Breve Estudio de Las Zonas Ecologicas de Zacatál-Aquada Maya-, Nakbé, Petén, Guatemala. Instituto de Antropología e Historía de Guatemala, Monumentos Prehispanicos, Guatemala.Google Scholar
Rosenmeier, M.F., Hodell, D.A., Brenner, M., Curtis, J.H., Guilderson, T.P., (2002). A 4000-year lacustrine record of environmental change in the southern Maya lowlands, Petén. Quaternary Research 57, 183190.Google Scholar
Roubik, D.W., Moreno, J.E., (1991). Pollen and Spores of Barro Colorado Island. Missouri Botanical Garden, St. Louis.Google Scholar
Schreiner, T., Wahl, D., (2000). Muestras sedimentarias e investigaciones arqueológicas e botánicas en la aguada zacatal, Nakbe, Peten, Guatemala: operacion 900. Hansen, R., Valle, J. Investigaciones Arqueológicas e Ecológicas en la Cuenca Mirador, 1998; Informe de la Temporada de Campo 531544.Google Scholar
Sharer, R.J., (1992). The preclassic origin of lowland Maya states. Danien, E.C., Sharer, R.J. New Theories on the Ancient Maya University Museum Symposium Series vol. 3, University Museum University of Pennsylvania, Philadelphia. 131136.Google Scholar
Stockmarr, J., (1971). Tablets with spores used in absolute pollen analysis. Pollen et Spores 13, 615621.Google Scholar
Stuiver, M., Reimer, P.J., Bard, E., Beck, J.W., Burr, G.S., Hughen, K.A., Kromer, B., McCormac, G., Van der Plicht, J., Spurk, M., (1998). INTCAL98 radiocarbon age calibration, 24,000-0 cal BP. Radiocarbon 40, 10411083.Google Scholar
Vaughan, H.H., Deevey, E.S., Garrett-Jones, S.E., (1985). Pollen stratigraphy of two cores from the Peten lake district, with an appendix on two deep-water cores. Pohl, M. Prehistoric Lowland Maya Environment and Subsistence Economy Harvard University Press, Cambridge. 7389.Google Scholar
Wahl, D., (2000). A Stratigraphic Record of Environmental Change From a Maya Reservoir in the Northern Peten, Guatemala.. Unpublished M.A. thesis, University of California, Berkeley.Google Scholar
Whitehead, D.R., Langham, E.J., (1965). Measurement as a means of identifying fossil Maize Pollen. Bulletin of the Torrey Botanical Club 92, 720.CrossRefGoogle Scholar
Whitmore, T.J., Brenner, M., Curtis, J.H., Dahlin, B.H., Leyden, B.W., (1996). Holocene climatic and human influences on lakes of the Yucatan Peninsula, Mexico: an interdisciplinary, palaeolimnological approach. The Holocene 6, 273287.Google Scholar
Wiseman, F.M., (1974). Paleoecology and the Prehistoric Maya: A History of Man-Land Relationships in the Tropics.. Unpublished M.A. thesis, University of Arizona.Google Scholar