Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-12T23:14:49.574Z Has data issue: false hasContentIssue false

Holocene lake salinity changes in the Wimmera, southeastern Australia, provide evidence for millennial-scale climate variability

Published online by Cambridge University Press:  20 January 2017

Justine Kemp*
Affiliation:
School of the Built and Natural Environment, Northumbria University, Newcastle-upon-Tyne, NE1 8ST, UK
Lynda C. Radke
Affiliation:
Department of Geology, The Australian National University, Canberra, A.C.T. 0200, Australia
Jon Olley
Affiliation:
Australian Rivers Institute, Griffith University, Nathan Campus, Brisbane, Queensland 4111, Australia
Steve Juggins
Affiliation:
School of Geography, Politics and Sociology, Newcastle University, Newcastle-upon-Tyne, NE1 7RU, UK
Patrick De Deckker
Affiliation:
Research School of Earth Sciences, The Australian National University, Canberra, A.C.T. 0200, Australia
*
*Corresponding author. Fax: + 44 191 227 3519. E-mail address:[email protected] (J. Kemp).

Abstract

Palaeosalinity records for groundwater-influenced lakes in the southwest Murray Basin were constructed from an ostracod-based, weighted-averaging transfer function, supplemented with evidence from Campylodiscus clypeus (diatom), charophyte oogonia, Coxiella striata (gastropod), Elphidium sp. (foraminifera), Daphniopsis sp. ephippia (Cladocera), and brine shrimp (Parartemia zietziana) faecal pellets, the δ18O of ostracods, and > 130 μm quartz sand counts. The chronology is based on optically stimulated luminescence and calibrated radiocarbon ages. Relatively wet conditions are marked by lower salinities between 9600 yr and 5700 yr ago, but mutually exclusive high- and low-salinity ostracod communities suggest substantial variability in effective precipitation in the early Holocene. A drier climate was firmly in place by 4500 yr and is marked at the groundwater-dominated NW Jacka Lake by an increase in aeolian quartz and at Jacka Lake, by a switch from surface-water to groundwater dominance. Short-lived, low-salinity events at 8800, 7200, 5900, 4800, 2400, 1300 and 400 yr are similar in timing and number to those recorded on Australia's southern continental shelf, and globally, and provide evidence for the existence of the ~ 1500-yr cycle in mainland southern Australia. We surmise that these are cool events associated with periodic equatorward shifts in the westerly wind circulation.

Type
Original Articles
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allen, C.S., Oakes-Fretwell, L., Anderson, J.B., Hodgson, D.A., (2010). A record of Holocene glacial and oceanographic variability in Neny Fjord, Antarctic Peninsula. The Holocene 20, 551564.Google Scholar
Alley, R.A., Agustsdottir, A.M., (2005). The 8k event: cause and consequences of a major Holocene abrupt climate change. Quaternary Science Reviews 24, 11231149.Google Scholar
Alley, R.A., Clark, P.U., Keigwin, L.D., Webb, R.S., (1999). Making sense of millennial-scale climate change. Clark, P.U., Webb, R.S., Keigwin, L.D., Mechanisms of Global Climate Change at Millenial Time Scales. American Geophysical Union, Washington, D.C.. 385394.Google Scholar
Berner, R.A., (1984). Sedimentary pyrite formation: an update. Geochimica et Cosmochimica Acta 48, 605615.Google Scholar
Birks, H.J.B., (1995). Quantitative paleoenvironmental reconstructions. Maddy, D., Brew, J., Statistical Modelling of Quaternary Science Data. Technical Guide 5, Quaternary Research Association, Cambridge. 161254.Google Scholar
Birks, H.J.B., (2003). Quantitative paleoenvironmental reconstructions from Holocene biological data. Mackay, A., Battarbee, R.W., Birks, H.J.B., Oldfield, F., Global Change in the Holocene. Arnold, London. 107123.Google Scholar
Birks, H.J.B., Line, J.M., Juggins, S., Stevenson, A.C., ter Braak, C.J.F., (1990). Diatoms and pH reconstruction. Philosophical Transactions of the Royal Society of London B327, 263278.Google Scholar
Bond, G.C., Showers, W., Elliot, M., Evans, M., Lotti, R., Hajdas, I., Bonani, G., Johnson, S., (1999). The North Atlantic's 1–2 kyr climate rhythm: relation to Heinrich events, Dansgaard–Oescher cycles and the Little Ice Age. Clark, P.U., Webb, R.S., Keigwin, L.D., Mechanisms of Global Climate Change at Millenial Time Scales. American Geophysical Union, Washington, D.C.. 35394.Google Scholar
Bond, G., Kromer, B., Beer, J., Muscheler, R., Evans, M.N., Showers, W., Hoffmann, S., Lotti-Bond, R., Hajdas, I., Bonani, G., (2001). Persistent solar influence on North Atlantic climate during the Holocene. Science 278, 12571266.Google Scholar
Bowler, J.M., (1981). Australian salt lakes: a paleohydrological approach. Hydrobiologia 82, 431444.Google Scholar
Bowler, J.M., Hamada, T., (1971). Late Quaternary stratigraphy and radiocarbon chronology of water level fluctuations in Lake Keilembete, Victoria. Nature 232, 330332.Google Scholar
Bowler, J.M., Qi, H., Kezao, C., Head, J.M., Baoyin, Y., (1986). Radiocarbon dating of playa-lake hydrologic changes: examples from northwestern China and central Australia. Palaeogeography, Palaeoclimatology, Palaeoecology 54, 241260.Google Scholar
Briffa, K.R., (2000). Annual climate variability in the Holocene: interpreting the message of tree rings. Quaternary Science Reviews 19, 87105.Google Scholar
Brownbill, R., (1995). The hydrology and chemistry of shallow groundwater and associated lakes systems in the southern Wimmera Area, Victoria. Unpublished M Sc thesis, University of Melbourne, Melbourne.Google Scholar
Cann, J.H., De Deckker, P., (1981). Fossil Quaternary and living foraminifera from athalassic (non-marine) saline lakes, southern Australia. Journal of Paleontology 55, 660670.Google Scholar
Cann, J.H., Bouman, R.P., Barnett, E.J., (2000). Holocene foraminifera as indicators of relative estuarine–lagoonal and oceanic influences in estuarine sediments of the River Murray, South Australia. Quaternary Research 53, 378391.Google Scholar
Carvalho, L., Sims, P., Battarbee, R.W., Cox, E.J., Juggins, S., (1995). Campylodiscus clypeus in inland saline lakes. Robertson, A.M., Hicks, S., Akerlund, A., Risberg, J., Hackems, T., Landscapes and Life: Studies in Honour of Urve Millar. PACT. 50 – IVII, Belgium. 471484.Google Scholar
Charles, C.D., Lynch-Stieglitz, J., Ninnemann, U.S., Fairbanks, R.G., (1996). Climate connections between the hemisphere revealed by deep sea sediment core/ice core correlations. Earth and Planetary Science Letters 142, 1927.Google Scholar
Chivas, A.R., De Deckker, P., Shelley, J.M.G., (1985). Strontium content of ostracods indicates lacustrine paleosalinity. Nature 316, 251253.Google Scholar
Chivas, A.R., De Deckker, P., Shelley, J.M.G., (1986). Magnesium and strontium in non-marine ostracods shells as indicators of paleosalinity and paleotemperature. Hydrobiologia 143, 135142.Google Scholar
Chivas, A.R., De Deckker, P., Cali, J.A., Chapman, A., Kiss, E., Shelley, J.M.G., (1993). Coupled stable-isotope and trace-element measurements of lacustrine carbonates as paleoclimatic indicators. Swart, P.K., Lohmann, K.C., McKenzie, J.A., Savin, S.M., Climate Change in Continental Isotopic Records. American Geophysical Union, Geophysical Monograph. 113121.Google Scholar
Clark, P.U., Webb, R.S., Keigwin, L.D., (1999). Mechanisms of Global Climate Change at Millennial Time Scales. American Geophysical Union, Washington.Google Scholar
Cook, E.R., Buckley, B.M., D'Arrigo, R.D., Peterson, M.J., (2000). Warm-season temperatures since 1600 BC reconstructed from Tasmanian tree rings and their relationship to large-scale sea surface temperature anomalies. Climate Dynamics 16, 7991.Google Scholar
Cook, E.R., Palmer, J.G., D'Arrigo, R.D., (2002). Evidence for a ‘Medieval Warm Period’ in a 1,100 year tree-ring reconstruction of past austral summer temperatures in New Zealand. Geophysical Research Letters 29, 1667 http://dx.doi.org/10.1029/2001GL014580Google Scholar
Costin, A.B., (1972). Carbon14 dates from the Snowy Mountains area, southeastern Australia, and their interpretation. Quaternary Research 2, 579590.Google Scholar
Crowley, T.J., (2000). Causes of climate change over the last 1000 years. Science 289, 270277.Google Scholar
De Deckker, P., (1982). Holocene ostracods, other invertebrates and fish remains from cores of four maar lakes in southeastern Australia. Proceedings of the Royal Society of Victoria 94, 183220.Google Scholar
De Deckker, P., (1988). An account of the techniques using ostracods in paleolimnolgy in Australia. Palaeogeography, Palaeoclimatology, Palaeoecology 62, 463475.Google Scholar
De Deckker, P., Geddes, M.C., (1980). Seasonal fauna of ephemeral saline lakes near the Coorong Lagoon, South Australia. Australian Journal of Marine & Freshwater Research 31, 677699.Google Scholar
De Deckker, P., Corrège, T., Head, J., (1991). Late Pleistocene record of cyclic eolian activity from tropical Australia suggesting the Younger Dryas is not an unusual climatic event. Geology 19, 602605.Google Scholar
De Deckker, P., Magee, J.W., Shelley, J.M.G., (2011). Late Quaternary paleohydrological changes in the large playa Lake Frome in central Australia, recorded from the Mg/Ca and Sr/Ca in ostracod valves and biotic remains. Journal of Arid Environments 75, 3850.Google Scholar
Debret, M., Bout-Roumazeilles, V., Grousset, F., Desmet, M., McManus, J.F., Massei, N., Sebag, D., Petit, J.R., Copard, Y., Trentesaux, A., (2007). The origin of the 1500-year climate cycles in the Holocene North-Atlantic records. Climate of the Past 3, 569575.Google Scholar
Delorme, L.D., (1971a). Paleoecological determinations using Pleistocene freshwater ostracodes. Oertli, H.J., Colloque sur la Paléoécologie des Ostracodes. Société Nationale des Pétroles d'Aquitaine, Pau, France. 341347.Google Scholar
Delorme, L.D., (1971b). Paleoecology of Holocene sediments from Manitoba using freshwater ostracods. Geological Association of Canada Special Paper 9, 301304.Google Scholar
Delorme, L.D., Zoltai, S.C., Kalais, L.L., (1978). Freshwater shelled invertebrate indicators of paleoclimate in northwestern Canada during late glacial times. Canadian Journal of Earth Sciences 14, 20292046.Google Scholar
Dima, M., Lohmann, G., (2009). Conceptual model for millennial climate variability: a possible combined solar–thermohaline circulation origin for the 1,500-year cycle. Climate Dynamics 32, 301311.Google Scholar
Dodson, J.R., (1974). Vegetation and climate history near Lake Keilambete. Australian Journal of Botany 22, 709717.Google Scholar
Donders, T.H., Haberle, S.G., Hope, G., Wagner, F., Visscher, H., (2007). Pollen evidence for the transition of the Eastern Australian climate system from the post-glacial to the present-day ENSO mode. Quaternary Science Reviews 26, 16211637.Google Scholar
EPICA Community Members, . (2004). Eight glacial cycles from an Antarctic core. Nature 429, 623627.Google Scholar
Fitzharris, B.B., Hay, J.E., Jones, P.D., (1992). Behaviour of New Zealand glaciers and atmospheric circulation changes over the past 130 years. The Holocene 2, 97106.Google Scholar
Fitzsimmons, K.E., Barrows, T.T., (2010). Holocene hydrologic variability in temperate southeastern Australia: an example from Lake George, New South Wales. The Holocene 20, 585597.Google Scholar
Fritz, S.C., Juggins, S., Battarbee, R.W., Engstrom, D.R., (1991). Reconstruction of past changes in salinity and climate using a diatom-based transfer function. Nature 352, 706708.Google Scholar
Fritz, S.C., Engstrom, D.R., Haskell, B.J., (1994). ‘Little Ice Age’ aridity in the North American Great Plains: a high-resolution reconstruction of salinity fluctuations from Devils Lake, North Dakota, USA. The Holocene 4, 6973.Google Scholar
Gabrielli, P., Wegner, A., Petit, J.R., Delmonte, B., De Deckker, P., Gaspari, V., Fischer, H., Ruth, U., Kriews, M., Boutron, C., Cescon, P., Barbante, C., (2010). A major glacial–interglacial change in aeolian dust composition inferred from Rare Earth Elements in Antarctic ice. Quaternary Science Reviews 29, 265273.Google Scholar
Geddes, M.C., (1976). Seasonal fauna of some ephemeral saline waters in western Victoria with particular reference to Parartemia zietziana Sayce (Crustacea: Anostraca). Australian Journal of Marine & Freshwater Research 27, 122.CrossRefGoogle Scholar
Gell, P.A., (1998). Quantitative reconstructions of the Holocene paleosalinity of paired crater lakes based on a diatom transfer function. Paleoclimates 3, 8396.Google Scholar
Gell, P.A., Barker, P.A., De Deckker, P., Last, W.M., Jelicic, L., (1994). The Holocene history of West Basin Lake, Victoria, Australia: chemical changes based on fossil biota and sediment mineralogy. Journal of Paleolimnology 12, 235258.Google Scholar
Gellatly, A.F., Chinn, T.J.H., Rothlisberger, F., (1988). Holocene glacier variations in New Zealand: a review. Quaternary Science Reviews 7, 227242.Google Scholar
Gingele, F., De Deckker, P., Norman, M., (2007). Late Pleistocene and Holocene climate of SE Australia reconstructed from dust and river loads deposited offshore the River Murray Mouth. Earth and Planetary Science Letters 255, 257272.Google Scholar
Goede, A., McDermott, F., Hawksworth, C., Webb, J., Finlayson, B., (1996). Evidence of Younger Dryas and Neoglacial cooling in a late Quaternary paleotemperature record from a speleothelm in eastern Victoria, Australia. Journal of Quaternary Science 11, 17.Google Scholar
Gouramanis, C., De Deckker, P., (2010). Alkalinity control on the partition coefficients in lacustrine ostracodes from Australia. Geology 38, 359362.Google Scholar
Gouramanis, C., Wilkins, D., De Deckker, P., (2010). 6000 years of environmental changes recorded in Blue Lake, South Australia, based on ostracod ecology and valve chemistry. Palaeogeography, Palaeoclimatology, Palaeoecology 297, 223237.Google Scholar
Gupta, S.K., Polach, H., (1985). Radiocarbon Dating Practices at ANU. Australian National University Press, Canberra.Google Scholar
Harrison, S.P., (1993). Late Quaternary lake-level changes and climates of Australia. Quaternary Science Reviews 12, 211231.Google Scholar
Helama, S., Fauria, M., Mielikäinene, K., Timonen, M., Eronen, M., (2010). Sub-Milankovitch solar forcing of past climates: mid and late Holocene perspectives. Geological Society of America Bulletin 122, 19811988.Google Scholar
Hooker, B.L., Fitzharris, B.B., (1999). The correlation between climatic parameters and the retreat and advance of the Franz Josef Glacier, New Zealand. Global and Planetary Change 22, 3948.Google Scholar
Jones, R.N., Bowler, J.M., McMahon, T.A., (1998). A high resolution Holocene record of P/E ratio from closed lakes in western Victoria. Paleoclimates 3, 5182.Google Scholar
Juggins, S., (2007). C2 Version 1.5 User Guide. Software for Ecological and Paleoecological Data Analysis and Visualisation. Newcastle University, Newcastle-upon-Tyne, U.K.( 73 pp.).Google Scholar
Kaiser, J., Lamy, F., Hebbeln, D., (2005). A 70-kyr sea surface temperature record off southern Chile (Ocean Drilling Program Site 1233). Paleoceanography 20, PA4009.Google Scholar
Lamy, F., Hebbeln, D., Rohl, U., Wefer, G., (2001). Holocene rainfall variability in southern Chile: a marine record of latitudinal shifts of the Southern Westerlies. Earth and Planetary Science Letters 185, 369382.Google Scholar
Lamy, F., Kilian, R., Helge, W.A., Francois, J.P., Prange, M., Steinke, T., (2010). Holocene changes in the position and intensity of the southern westerly wind belt. Nature Geoscience 3, 695699.Google Scholar
Leaney, F.W.J., Herczeg, A.L., (1999). The origin of fresh groundwater in the SW Murray Basin and its potential for salinisation. CSIRO Land and Water, Technical Report 7/99, Adelaide.Google Scholar
Macumber, P.G., (1991). Interaction Between Groundwater and Surface Systems in Northern Victoria. Victoria Department of Conservation and Environment, Melbourne.Google Scholar
Marino, F., Castellano, E., Ceccato, D., De Deckker, P., Delmonte, B., Ghermandi, B., Maggi, V., Petit, J.R., Revel-Rolland, M., Udisti, R., (2008). Defining the geochemical composition of the EPICA Dome C ice core dust during the last glacial–interglacial cycle. Geochemistry, Geophysics, Geosystems 9, 111.Google Scholar
Markgraf, V., Bradbury, J.P., Busby, J.R., (1986). Paleoclimates in southwestern Tasmania during the last 13,000 years. Palaios 1, 368380.Google Scholar
Markgraf, V., Dodson, J., Kershaw, A.P., McGlone, M.S., Nicholls, N., (1992). Evolution of late Pleistocene and Holocene climates in the circum-South Pacific land areas. Climate Dynamics 6, 193211.Google Scholar
Masson, V., Vimeux, F., Jouzel, J., Morgan, V., Delmotte, M., Ciais, P., Hammer, C., Johnsen, S., Lipenkov, V.Y., Mosley-Thompson, E., Petit, J.R., Steig, E.J., Stievenard, M., Vaikmae, R., (2000). Holocene climatic variability in Antarctica based on 11 ice-core isotopic records. Quaternary Research 54, 348358.Google Scholar
Masson-Delmotte, V., Stenni, B., Jouzel, J., (2004). Common millennial-scale variability of Antarctic and Southern Ocean temperatures during the past 5000 years reconstructed from the EPICA Dome C ice core. The Holocene 14, 145151.Google Scholar
Mayewski, P.A., Rohling, E.E., Stager, J.C., Karlen, W., Maasch, K.A., Meeker, L.D., Meyerson, E.A., Gasse, F., van Kreveld, S., Holmgren, K., Lee-Thorp, J., Rosqvist, G., Rack, F., Staubwasser, M., Schneider, R.R., Steig, E.J., (2004). Holocene climate variability. Quaternary Research 62, 243255.Google Scholar
McAuley, C., Evans, C., Robinson, M., Chaplin, H., Thorne, R., (1992). HORSHAM Hydrogeological Map. Australian Geological Survey Organization, Canberra.Google Scholar
Moreno, P.I., (2004). Millennial-scale climate variability in northwest Patagonia over the last 15000 yr. Journal of Quaternary Science 19, 3547.Google Scholar
Moreno, P.I., Francois, J.P., Villa-Martinez, R., Moy, C.M., (2009). Millennial-scale variability in Southern Hemisphere westerly wind activity over the last 5000 years in SW Patagonia. Quaternary Science Reviews 28, 2538.Google Scholar
Moros, M., De Deckker, P., Jansen, E., Perner, K., Telford, R.J., (2009). Holocene climatic variability in the Southern Ocean recorded in a deep-sea sediment core off South Australia. Quaternary Science Reviews 28, 19321940.Google Scholar
Nicholls, N., (1989). Sea surface temperatures and Australian winter rainfall. Journal of Climate 2, 965973.Google Scholar
Ninnemann, U.S., Charles, C.D., Hodell, D.A., (1999). Origin of global millenial scale climate events: constraints from the Southern Ocean deep sea sedimentary record. Clarke, P.U., Webb, R.S., Keigwin, L.D., Mechanisms of Global Climate Change at Millennial Time Scales. Geophysical Monograph 112, American Geophysical Union, 99112.Google Scholar
Olley, J.M., Murray, A.S., MacKenzie, D.H., Edwards, K., (1991). The use of fallout nuclides as chronometers. Gillespie, R., Proceedings of the Quaternary Dating Workshop, 1990. Department of Biogeography and Geomorphology, Australian National University, Canberra. 5155.Google Scholar
Olley, J.M., Pietsch, T., Roberts, R.G., (2004). Optical dating of Holocene sediments from a variety of gemorphic settings using single grains of quartz. Geomorphology 60, 337358.Google Scholar
Pickett, E.J., Harrison, S.P., Hope, G., Harle, K., Dodson, J.R., Kershaw, A.P., Prentice, I.C., Backhouse, J., Colhoun, E.A., D'Costa, D., Flenley, J., Grindrod, J., Haberle, S., Hassell, C., Kenyon, C., Macphail, M., Martin, H., Martin, A.H., McKenzie, M., Newsome, J.C., Penny, D., Powell, J., Raine, J.I., Southern, W., Stevenson, J., Sutra, J.P., Thomas, I., van der Kaas, S., Ward, J., (2004). Pollen based reconstructions of biome distributions for Australia, Southeast Asia and the Pacific (SEAPAC region) at 0, 6000 and 18,000 14C years BP. Journal of Biogeography 31, 13811444.Google Scholar
Radke, L.C., (2000). Solute divides and chemical facies in southeast Australian salt lakes and the response of ostracods in time (Holocene) and space.. Unpublished PhD thesis, Australian National University, Canberra.Google Scholar
Radke, L.C., Howard, K.W.F., (2007). Influence of groundwater on the evaporative evolution of saline lakes in the Wimmera of south-eastern Australia. Hydrobiologia 591, 185205.Google Scholar
Radke, L.C., Howard, K.W.F., Gell, P.A., (2002). Chemical diversity in south-eastern Australian lakes. I: Geochemical causes. Marine and Freshwater Research 53, 941959.Google Scholar
Radke, L.C., Juggins, S.A., Halse, S.A., De Deckker, P., Finston, T., (2003). Chemical diversity in south-eastern Australian saline lakes. II: Biotic implications. Marine and Freshwater Research 54, 895912.Google Scholar
Rahmstorf, S., (2003). Timing of abrupt climate change: a precise clock. Geophysical Research Letters 30, 1510.Google Scholar
Risbey, J.S., Pook, M.J., McIntosh, P.C., Wheeler, C.W., Hendon, H.H., (2009). On the remote drivers of rainfall variability in Australia. Monthly Weather Review 137, 32333253.Google Scholar
Santrock, J., Studley, S.A., Hayes, J.M., (1985). Isotopic analyses based on the mass spectrum of carbon dioxide. Analytical Chemistry 57, 14441448.Google Scholar
Seager, R., Battisti, D.S., (2007). Challenges to our understanding of the general circulation: abrupt climate change. Schneider, T., Sobel, A.H., The Global Circulation of the Atmosphere. Princeton University Press, Princeton, N.J.. 331371.Google Scholar
Shulmeister, J., (1999). Australasian evidence for mid-Holocene climate change implies precessional control of Walker Circulation in the Pacific. Quaternary International 57, 58, 8191.Google Scholar
Shulmeister, J., Goodwin, I., Renwick, J., Harle, K., Armand, L., McGlone, M.S., Cook, E., Dodson, J., Hesse, P.P., Mayewski, P., Curran, M., (2004). The southern hemisphere westerlies in the Australasian sector during the last glaciation cycle. Quaternary International 118, 119, 2353.Google Scholar
Singh, G., Luly, J., (1991). Changes in vegetation and seasonal climate since the last full glacial at Lake Frome, South Australia. Palaeogeography, Palaeoclimatology, Palaeoecology 84, 7586.Google Scholar
Smith, A.J., (1991). Lacustrine Ostracodes as Paleohydrochemical Indicators in Holocene Lake Records of the North-Central United States. Unpublished PhD thesis, Brown University, Providence.Google Scholar
Soulié-Marsche, I., (1991). Charophytes as lacustrine biomarkers during the Quaternary in North Africa. Journal of African Earth Sciences 12, 341351.Google Scholar
Stanley, S., De Deckker, P., (2002). A Holocene record of allochthonous mineral grains into an Australian alpine lake; implications for the history of climate change in southeast Australia. Journal of Paleolimnology 27, 207219.Google Scholar
Stuiver, M., Reimer, P.J., (1993). Extended 14C data base and revised CALIB 3.0 14C age calibration program. Radiocarbon 35, 215230.Google Scholar
Suggate, R.P., (1990). Late Pliocene and Quaternary glaciations of New Zealand. Quaternary Science Reviews 9, 175197.Google Scholar
ter Braak, C.J.F., Juggins, S., (1993). Weighted averaging partial least squares regression (WA-PLS): an improved method for reconstructing environmental variables from species assemblages. Hydrobiologia 269, 270, 485502.Google Scholar
ter Braak, C.J.F., van Dam, H., (1989). Inferring pH from diatoms: a comparison of old and new calibration methods. Hydrobiologia 178, 209223.Google Scholar
Turney, C.S.M., Kershaw, A.P., Clemens, S.C., Branch, N., Moss, P.T., Fifield, L.K., (2004). Millennial and orbital variations of El Nino/Southern Oscillation and high-latitude climate in the last glacial period. Nature 428, 306310.Google Scholar
van der Voet, H., (1994). Comparing the predictive accuracy of models using a simple randomization test. Chemometrics and Intelligent Laboratory Systems 25, 313323.Google Scholar
Varma, V., Prange, M., Lamy, F., Merkel, U., Schulz, M., (2010). Solar-forced shifts of the Southern Hemisphere Westerlies during the late Holocene. Climate of the Past Discussions 6, 369384.Google Scholar
Versteegh, G.J.M., (2005). Solar forcing of climate. Space Science Reviews 120, 243286.Google Scholar
Villa-Martinez, R., Moreno, P.I., (2007). Pollen evidence for variations in the southern margin of the westerly winds in SW Patagonia over the last 12,600 years. Quaternary Research 68, 400409.Google Scholar
Wasson, R.J., (1984). Late Quaternary paleoenvironments in the desert dunefields of Australia. Vogel, J.C., Late Cainozoic Paleoclimates of the Southern Hemisphere. SASQUA International Symposium, 29 August–2 September 1983 Swaziland, Johannesburg. 419432.Google Scholar
Wanner, H., Butikofer, J., (2008). Holocene Bond cycles: real or imaginary. Geografie-Sbornik 113, 338350.Google Scholar
Wanner, H., Beer, J., Butikofer, J., Crowley, T.J., Cubasch, U., Fluckiger, J., Goose, H., Grosjean, M., Fortunat, J., Kaplan, J.O., Kuttel, M., Muller, S.A., Prentice, I.C., Solomina, O., Stocker, T.F., Tarasov, P., Wagner, M., Widmann, M., (2008). Mid- to Late Holocene climate change: an overview. Quaternary Science Reviews 27, 17911828.Google Scholar
Williams, W.D., Mellor, M.W., (1991). Ecology of Coxiella (Mollusca, Gastropoda, Prosobranchia), a snail endemic to Australian salt lakes. Palaeogeography, Palaeoclimatology, Palaeoecology 84, 339355.Google Scholar
Williams, P.W., King, D.N.T., Zhao, J.-X., Collerson, K.D., (2005). Late Pleistocene to Holocene composite speleothem 18O and 13C chronologies from South Island, New Zealand – did a global Younger Dryas really exist?. Earth and Planetary Science Letters 230, 301317.Google Scholar
Xia, Q., Zhao, J.-X., Collerson, K.D., (2001). Early-mid Holocene climatic variations in Tasmania, Australia: multi-proxy records in a stalagmite from Lynd's Cave. Earth and Planetary Science Letters 194, 177187.Google Scholar