Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-26T06:41:28.910Z Has data issue: false hasContentIssue false

Holocene history of fire, vegetation and land use from the central Pyrenees (France)

Published online by Cambridge University Press:  20 January 2017

Damien Rius*
Affiliation:
Laboratoire Chrono-Environnement, UMR 6249 CNRS, Université de Franche-Comté, UFR ST, 16 route de Gray, 25030 Besançon, France Laboratoire GEODE, UMR 5602 CNRS, Université Toulouse II-le Mirail, 5 allées Antonio Machado, 31058 Toulouse, France
Boris Vanniére
Affiliation:
Laboratoire Chrono-Environnement, UMR 6249 CNRS, Université de Franche-Comté, UFR ST, 16 route de Gray, 25030 Besançon, France
Didier Galop
Affiliation:
Laboratoire GEODE, UMR 5602 CNRS, Université Toulouse II-le Mirail, 5 allées Antonio Machado, 31058 Toulouse, France
*
*Corresponding author at: Laboratoire Chrono-Environnement, UMR 6249 CNRS, Université de Franche-Comté, UFR ST, 16 route de Gray, 25030 Besançon, France. E-mail address:[email protected] (D. Rius).

Abstract

Located on a mountain pass in the west-central Pyrenees, the Col d'Ech peat bog provides a Holocene fire and vegetation record based upon nine 14C (AMS) dates. We aim to compare climate-driven versus human-driven fire regimes in terms of frequency, fire episodes distribution, and impact on vegetation. Our results show the mid-Holocene (8500–5500 cal yr BP) to be characterized by high fire frequency linked with drier and warmer conditions. However, fire occurrences appear to have been rather stochastic as underlined by a scattered chronological distribution. Wetter and colder conditions at the mid-to-late Holocene transition (4000–3000 cal yr BP) led to a decrease in fire frequency, probably driven by both climate and a subsequent reduction in human land use. On the contrary, from 3000 cal yr BP, fire frequency seems to be driven by agro-pastoral activities with a very regular distribution of events. During this period fire was used as a prominent agent of landscape management.

Type
Original Articles
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abrams, M.D., Nowacki, G.J., (2008). Native Americans as active and passive promoters of mast and fruit trees in the eastern USA. The Holocene 18, 11231137.Google Scholar
Ali, A.A., Carcaillet, C., Bergeron, Y., (2009). Long-term fire frequency variability in the eastern Canadian boreal forest: the influences of climate vs. local factors. Global Change Biology 15, 12301245.Google Scholar
Alley, R.B., Mayewski, P.A., Sowers, T., Stuiver, M., Taylor, K.C., Clark, P.U., (1997). Holocene climatic instability: a prominent, widespread event 8200 yr ago. Geology 25, 483486.Google Scholar
Bahn, P.G., (1984). Pyrenean Prehistory. A Palaeoeconomic Survey of the French Sites. Aris & Phillips Ltd, Warminster. 511 pp.Google Scholar
Bal, M.-C., Rendu, C., Ruas, M.-P., Campmajo, P., (2010). Paleosol charcoal: reconstructing vegetation history in relation to agro-pastoral activities since the Neolithic. A case study in the Eastern French Pyrenees. Journal of Archaeological Science 37, 17851797.Google Scholar
Berthe, M., (1984). Famine et "pidemie dans les campagnes navaraisses – la fin du Moyen Age. Paris, 2 vol.Google Scholar
Beug, H.-J., (2004). Leitfaden der Pollenbestimmung f"r Mitteleuropa und angrenzende Gebiet. Pfeil, M"nchen (D). 542 pp.Google Scholar
Blaauw, M., Van der Plicht, J., Van Geel, B., (2004). Radiocarbon dating of bulk peat samples from raised bogs: non-existence of a previously reported "reservoir effect"?. Quaternary Science Reviews 23, 15371542.Google Scholar
Bonnassie, P., (1989). La croissance agricole du Haut Moyen Age dans la Gaule du Midi et le Nord est de la peninsule ib"rique. La croissance agricole du Haut Moyen Age. Flaran 10, 1335.Google Scholar
Carcaillet, C., (1998). A spatially precise study of Holocene fire history, climate and human impact within the Maurienne valley, North French Alps. Journal of Ecology 86, 384396.Google Scholar
Carcaillet, C., Bouvier, M., Frechette, B., Larouche, A.C., Richard, P.J.H., (2001). Comparison of pollen slide and sieving methods in lacustrine charcoal analyses for local and regional fire history. The Holocene 11, 467476.Google Scholar
Carozza, L., Galop, D., (2008). Le dynamisme des marges, Peuplement et exploitation des espaces de montagne durant l'"ge du Bronze. Guilaine, J., Villes, villages, campagnes de l'Age du Bronze. Editions Errance, .Google Scholar
Carri"n, J.S., S"nchez-G"mez, P., Mota, J.F., Riker, Y., Chain, C., (2003). Holocene vegetation dynamics, fire and grazing in the Sierra de Gador, southern Spain. The Holocene 13, 839849.Google Scholar
Clark, J.S., (1995). Particle-size evidence for source areas of charcoal accumulation in late Holocene sediments of eastern North American lakes. Quaternary Research 43, 8089.Google Scholar
Clark, J.S., Patterson, W.A., (1997). Background and local charcoal in sediments: scales of fire evidence in the palaeorecord. Clark, J.S., Cachier, H., Goldammer, J.G., Stocks, B., Sediments Records of Biomass Burning and Global Change. NATO ASI Series Springer, Berlin. 2349.Google Scholar
Clark, J.S., Merkt, I., Muller, H., (1989). Post-glacial fire, vegetation and human history of the northern Alpine Forelands, southwestern Germany. Journal of Ecology 77, 897925.Google Scholar
Dupias, G., (1985). V"g"tation des Pyr"n"es. Notice d"taill"e de la partie pyr"n"enne des feuilles (69, 70, 71, 72, 76, 77, 78). Ed. CNRS, Paris. 209 pp.Google Scholar
Enache, M.D., Cumming, B.F., (2006). Tracking recorded fires using charcoal morphology from the sedimentary basin of Prosser Lake, British Columbia (Canada). Quaternary Research 65, 282292.Google Scholar
Enache, M.D., Cumming, B.F., (2007). Charcoal morphotypes in lake sediments from British Columbia (Canada): an assessment of their utility for the reconstruction of past fire and precipitation. Journal of Paleolimnology 38, 347363.Google Scholar
Enache, M.D., Cumming, B.F., (2009). Extreme fires under warmer and drier conditions inferred from sedimentary charcoal morphotypes from Opatcho Lake, central British Columbia, Canada. The Holocene 19, 835846.Google Scholar
Faegri, K., Iversen, J., (1989). Textbook of Pollen Analysis. 4th editionChichester, 328 pp.Google Scholar
Galop, D., (1998). La for"t, l'homme et le troupeau dans les Pyr"n"es. 6000 ans d'histoire de l'environnement entre Garonne et M"diterran"e. GEODE, Laboratoire d'"cologie terrestre, FRAMESPA, Toulouse.Google Scholar
Galop, D., (2000). La croissance m"di"vale sur le versant nord des Pyr"n"es – partir des donn"es palynologiques . Berthe, M., Cursente, B., Villages Pyr"n"ens Morphogen"se d'un habitat de montagne. CNRS, UTM, 4554.Google Scholar
Galop, D., (2001). Les apports de la palynologie – l'histoire rurale : l'exemple de la longue dur"e des activit"s agro-pastorales pyr"n"ennes. Etudes Rurales 153"154, 127138.Google Scholar
Galop, D., (2005). Les transformations de l'environnement pyr"n"en durant l'Antiquit" : l'"tat de la question – la lumi"re des donn"es polliniques. Aquitania Suppl"ment 13, 317327.Google Scholar
Galop, D., (2006). La conqu"te de la montagne Pyr"n"enne au N"olithique. Chronologie, rythmes et transformations des paysages – partir des donn"es polliniques. Guilaine, J., Populations n"olithiques et environnement. Editions Errance, 279295.Google Scholar
Galop, D., Jalut, G., (1994). Differential human impact and vegetation history in two adjacent Pyrenean valleys in the Ari"ge basin, southern France, from 3000 B.P. to the present. Vegetation History and Archaeobotany 3, 225244.Google Scholar
Galop, D., Vanniere, B., Fontugne, M., (2002). Human activities and fire history since 4500 BC on the northern slope of the Pyrenees: a record from Cuguron (Central Pyrenees, France). Thi"bault, S., Charcoal analysis: methodological approaches, palaeological results and wood uses. Proceedings of the Second International Meeting of Anthracology, Paris, September 2000. BAR International Series 1063, 4351.Google Scholar
Galop, D., Carozza, L., Marembert, F., Bal, M.-C., (2007). Activit"s pastorales et climat durant l'"ge du Bronze dans les Pyr"n"es : l'"tat de la question – la lumi"re des donn"es environnementales et arch"ologiques. Richard, H., Magny, M., Mordant, C., Environnements et cultures – l'"ge du Bronze en Europe occidentale. Editions du CTHS, 107119.Google Scholar
Galop, D., Houet, T., Mazier, F., Leroux, G., Rius, D., (2011). Grazing activities and biodiversity in the Pyrenees: new insight on high altitude ecosystems in the framework of a Human"Environment Observatory. PAGES News 19, 5355.CrossRefGoogle Scholar
Gavin, D.G., Brubaker, L.B., Lertzman, K.P., (2003). An 1800-year record of the spatial and temporal distribution of fire from the west coast of Vancouver Island, Canada. Canadian Journal of Forest Research 33, 576586.Google Scholar
Gavin, D.G., Hu, F.S., Lertzman, K.P., Corbett, P., (2006). Weak climatic control of stand-scale fire history during the late Holocene. Ecology 87, 17221732.CrossRefGoogle ScholarPubMed
Gil-Romera, G., Carri"n, J.S., Pausas, J.G., Sevilla-Callejo, M., Lamb, H.F., Fernandez, S., Burjachs, F., (2010). Holocene fire activity and vegetation response in South-Eastern Iberia. Quaternary Science Reviews 29, 10821092.Google Scholar
Grimm, E., (1987). CONISS: a Fortran 77 program for stratigraphically constrained cluster analysis by the method of incremental sum of squares. Computer and Geosciences 13, 1335.Google Scholar
Guilaine, J., (1994). La mer partag"e. La M"diterran"e avant l'"criture, 7000"2000 avant J"sus-Christ. Hachette, 453 pp.Google Scholar
Heegaard, E., Birks, H.J.B., Telford, R.J., (2005). Relationships between calibrated ages and depth in stratigraphical sequences: an estimation procedure by mixed-effect regression. The Holocene 15, 612618.CrossRefGoogle Scholar
Heyerdahl, E.K., Brubaker, L.B., Agee, J.K., (2001). Spatial controls of historical fire regimes: a multiscale example from the interior west, USA. Ecology 82, 660678.Google Scholar
Higuera, P.E., Gavin, D.G., Bartlein, P.J., Hallett, D.J., (2010). Peak detection in sediment-charcoal records: impacts of alternative analytical methods on fire-history interpretation. International Journal of Wildland Fire 19, 9961014.Google Scholar
Iversen, J., (1956). Forest clearance in the Stone Age. Scientific American 194, 3641.Google Scholar
Jalut, G., Aubert, S., Galop, D., Fontugne, M., Belet, J.M., (1996). Type regions F-zg and F-r, the northern slope of the Pyrenees. Berglund, B.E., Birks, H.J.B., Ralska-Jaziewczowa, M., Wright, H.E., Palaeoecological Events During the Last 15000 years"Regional Syntheses of Palaeoecological Studies of Lakes and Mires in Europe. J. Wiley & Sons, 612632.Google Scholar
Joerin, U.E., Stocker, T.F., Schluchter, C., (2006). Multicentury glacier fluctuations in the Swiss Alps during the Holocene. The Holocene 16, 697704.Google Scholar
Joerin, U.E., Nicolussi, K., Fischer, A., Stocker, T.F., Schl"chter, C., (2008). Holocene optimum events inferred from subglacial sediments at Tschierva Glacier, Eastern Swiss Alps. Quaternary Science Reviews 27, 337350.Google Scholar
Kaltenrieder, P., Procacci, G., Vanni"re, B., Tinner, W., (2010). Postglacial vegetation and fire history of the Euganean Hills (Colli Euganei) as recorded by sedimentary pollen and charcoal series from Lago della Costa (northeastern Italy). The Holocene 20, 679695.Google Scholar
Long, C.J., Whitlock, C., Bartlein, P.J., Millspaugh, S.H., (1998). A 9000-year fire history from the Oregon Coast Range, based on a high resolution charcoal study. Canadian Journal of Forest Research 28, 774787.Google Scholar
Lynch, J.A., Clark, J.S., Stocks, B.J., (2004). Charcoal production, dispersal and deposition from the Fort Providence experimental fire: interpreting fire regimes from charcoal records in the boreal forests. Canadian Journal of Forest Research 34, 16421656.Google Scholar
Magny, M., (2004). Holocene climate variability as reflected by mid-European lake-level fluctuations and its probable impact on prehistoric human settlements. Quaternary International 113, 6579.Google Scholar
Magny, M., Peyron, O., Gauthier, E., Rou"che, Y., Bordon, A., Billaud, Y., Chapron, E., Marguet, A., P"trequin, P., Vanni"re, B., (2009). Quantitative reconstruction of climatic variations during the Bronze Age based on pollen and lake-level data in the NW Alps, France. Quaternary International 200, 102110.Google Scholar
Mardones, M., Jalut, G., (1983). La tourbi"re de Biscaye (alt. 409m, Hautes-Pyr"n"es): Approche pal"o"cologique des 45000 derni"res ann"es. Pollen et Spores 25, 163212.Google Scholar
Marlon, J., Bartlein, P.J., Whitlock, . (2006). Fire-fuel-climate linkages in the northwestern USA during the Holocene. The Holocene 16, 10591071.Google Scholar
Marlon, J.R., Bartlein, P.J., Carcaillet, C., Gavin, D.G., Harrison, S.P., Higuera, P.E., Joos, F., Power, M.J., Prentice, I.C., (2008). Climate and human influences on global biomass burning over the past two millennia. Nature Geoscience http://dx.doi.org/10.1038/ngeo313CrossRefGoogle Scholar
M"taili", J.P., (1981). Le feu pastoral dans les Pyr"n"es centrales (Barousse, Oueil, Larboust). Ed. CNRS, Paris. 294 pp.Google Scholar
Miras, Y., Ejarque, A., Riera, S., Palet, J.M., Orengo, H., Euba, I., (2007). Dynamique holoc"ne de la v"g"tation et occupation des Pyr"n"es andorranes depuis le N"olithique ancien, d'apr"s l'analyse pollinique de la tourbi"re de Bosc dels Estanyons (2180m Vall de Madriu, Andorre). Comptes Rendus Palevol 6, 291300.Google Scholar
Monna, F., Galop, D., Carozza, L., Tual, M., Beyrie, A., Marembert, F., Chateau, C., Dominik, J., Grousset, F.E., (2004). Environmental impact of Basque mining and smelting recorded in a high ash minerogenic peat deposit. Science of the Total Environment 327, 197214.Google Scholar
Montan", F., Casals, P., Taull, M., Lambert, B., Dale, M.R.T., (2009). Spatial patterns of shrub cover after different fire disturbances in the Pyrenees. Annals of Forest Science 66, 612, 17.Google Scholar
Nicolussi, K., Kaufmann, M., Patzelt, G., van der Plicht, J., Thurner, A., (2005). Holocene tree-line variability in the Kauner Valley, indicated by dendrochronological analysis of living trees and subfossils logs. Vegetation History and Archaeobotany 14, 221234.Google Scholar
Nicolussi, K., Kaufmann, M., Melvin, T.M., van der Plicht, J., Schie"ling, P., Thurner, A., (2009). A 9111 year long conifer tree-ring chronology for the European Alps: a base for environmental and climatic investigations. The Holocene 19, 909920.CrossRefGoogle Scholar
Noti, R., van Leeuwen, J.F.N., Colombaroli, D., Vescovi, E., Pasta, S., La Mantia, T., Tinner, W., (2009). Mid- and late-Holocene vegetation and fire history at Biviere di Gela, a coastal lake in southern Sicily, Italy. Vegetation History and Archaeobotany 18, 371387.Google Scholar
Olsson, F., Gaillard, M.-J., Lemdahl, G., Greisman, A., Lanos, P., Marguerie, D., Marcoux, N., Skoglund, P., W"glind, J., (2010). A continuous record of fire covering the last 10500 calendar years from southern Sweden"the role of climate and human activities, 2010. Palaeogeography, Palaeoclimatology, Palaeoecology 291, 128141.Google Scholar
Pausas, J.G., (2004). Changes in fire and climate in the eastern Iberian Peninsula (Mediterranean basin). Climatic Change 63, 3, 337350.Google Scholar
Pe"a-Chocarro, L., Zapata, L., Iriarte, M.J., Gonz"lez Morales, M., Straus, L.G., (2005). The oldest agriculture in northern Atlantic Spain: new evidence from El Mir"n Cave (Ramales de la Victoria, Cantabria). Journal of Archaeological Science 32, 579587.Google Scholar
Pitkanen, A., (2000). Fire frequency and forest structure at a dry site between AD440 and 1110 based on charcoal and pollen records from a laminated lake sediment in Eastern Finland. The Holocene 10, 2, 221228.Google Scholar
Power, M.J., Marlon, J., Ortiz, N., Bartlein, P.J., Harrison, S.P., Mayle, F.E., Ballouche, A., Bradshaw, R.H.W., Carcaillet, C., Cordova, C., Mooney, S., Moreno, P.I., Prentice, I.C., Thonicke, K., Tinner, W., Whitlock, C., Zhang, Y., Zhao, Y., Ali, A.A., Anderson, R.S., Beer, R., Behling, H., Briles, C., Brown, K.J., Brunelle, A., Bush, M., Camill, P., Chu, G.Q., Clark, J., Colombaroli, D., Connor, S., Daniau, A.-L., Daniels, M., Dodson, J., Doughty, E., Edwards, M.E., Finsinger, W., Foster, D., Frechette, J., Gaillard, M.-J., Gavin, D.G., Gobet, E., Haberle, S., Hallett, D.J., Higuera, P., Hope, G., Horn, S., Inoue, J., Kaltenrieder, P., Kennedy, L., Kong, Z.C., Larsen, C., Long, C.J., Lynch, J., Lynch, E.A., McGlone, M., Meeks, S., Mensing, S., Meyer, G., Minckley, T., Mohr, J., Nelson, D.M., New, J., Newnham, R., Noti, R., Oswald, W., Pierce, J., Richard, P.J.H., Rowe, C., Sanchez-Goni, M.F., Shuman, B.N., Takahara, H., Toney, J., Turney, C., Urrego-Sanchez, D.H., Umbanhowar, C., Vandergoes, M., Vanni"re, B., Vescovi, E., Walsh, M., Wang, X., Williams, N., Wilmshurst, J., Zhang, J.H., (2008). Changes in fire regimes since the Last Glacial Maximum: an assessment based on a global synthesis and analysis of charcoal data. Climate Dynamics 30, 887907.CrossRefGoogle Scholar
Pr"fecture des Hautes-Pyr"n"es, . (2007). Plan d"partemental de Protection des For"ts Contre les Incendies. 58 pp. www.risquesmajeurs-hautes-pyrenees.pref.gouv.fr(last downloaded : 22/02/2011).Google Scholar
R Development Core Team(2009). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.http://www.R-projetc.org.Google Scholar
Reille, M., (1992-98). Pollen et spores d'Europe et d'Afrique du Nord. Laboratoire de Botanique Historique et Palynologie, Marseille.3, Google Scholar
Reille, M., Andrieu, V., (1995). Late-Pleistocene and Holocene in the Lourdes Basin (western Pyrenees, France): new pollenanalytical and chronological data. Vegetation History and Archaeobotany 4, 121.Google Scholar
Reimer, P.J., Baillie, M.G.L., Bard, E., Bayliss, A., Beck, J.W., Blackwell, P.G., Bronk Ramsey, C., Buck, C.E., Burr, G.S., Edwards, R.L., Friedrich, M., Grootes, P.M., Guilderson, T.P., Hajdas, I., Heaton, T.J., Hogg, A.G., Hughen, K.A., Kaiser, K.F., Kromer, B., McCormac, F.G., Manning, S.W., Reimer, R.W., Richards, D.A., Southon, J.R., Talamo, S., Turney, C.S.M., van der Plicht, J., Weyhenmeyer, C.E., (2009). IntCal09 and Marine09 radiocarbon age calibration curves, 0e50,000 years cal BP. Radiocarbon 51 (4), 1111e1150.Google Scholar
Renssen, H., Sepp", H., Heiri, O., Roche, D.M., Goosse, H., Fichefet, T., (2009). The spatial and temporal complexity of the Holocene thermal maximum. Nature Geoscience 2, 411414.Google Scholar
Rhodes, A.N., (1998). A method for the preparation and quantification of microscopic charcoal from terrestrial and lacustrine sediment cores. The Holocene 8, 113117.Google Scholar
Ribet, N., (2009). Parcours du feu. Techniques de br"lage – feu courant et socialisation de la nature dans les Monts d'Auvergne et les Pyr"n"es centrales . Th"se de Doctorat, EHESS Paris.Google Scholar
Rius, D., Vanniere, B., Galop, D., (2009). Fire frequency and landscape management in the north-western Pyrenean piedmont (France) since the early Neolithic (8000 cal.BP). The Holocene 19, 847859.Google Scholar
Rius, D., Vanni"re, B., Galop, D., Richard, H., (2011). Holocene fire regime changes from multiple-site sedimentary charcoal analyses in the Lourdes basin (Pyrenees, France). Quaternary Science Reviews 30, 16961709.Google Scholar
St"hli, M., Finsinger, W., Tinner, W., Allg"wer, B., (2006). Wildfire history and fire ecology of the Swiss National Park (Central Alps): new evidence from charcoal, pollen and plant macrofossils. The Holocene 16, 805817.Google Scholar
Stuiver, M., Reimer, P.J., (1993). Extended 14C data base and revised CALIB 3.0 14C age calibration program. Radiocarbon 35, 215230.Google Scholar
Tinner, W., Hubschmid, P., Wehrli, M., Ammann, B., Conedera, M., (1999). Long-term forest fire ecology and dynamics in southern Switzerland. Journal of Ecology 87, 273289.CrossRefGoogle Scholar
Tinner, W., Conedera, M., Gobet, E., Hubschmid, P., Wehrli, M., Ammann, B., (2000). A palaeoecological attempt to classify fire sensitivity of trees in the southern Alps. The Holocene 10, 565574.Google Scholar
Tinner, W., Conedera, M., Ammann, B., Lotter, A.F., (2005). Fire ecology north and south of the Alps since the last ice age. The Holocene 15, 12141226.Google Scholar
Tinner, W., Hu, F.S., Beer, R., Kaltenrieder, P., Scheurer, B., Kr"henb"hl, U., (2006). Postglacial vegetational and fire history: pollen, plant macrofossil and charcoal records from two Alaskan lakes. Vegetation History and Archaebotany 15, 279293.Google Scholar
Tinner, W., van Leeuwen, J.F.N., Colombaroli, D., Vescovi, , van der Knaap, W.O., Henne, P.D., Pasta, S., D'angelo, S., La Mantia, T., (2009). Holocene environmental changes at Gorgo Basso, a coastal lake in southern Sicily, Italy. Quaternary Science Reviews 28, 14981510.Google Scholar
Turner, R., Roberts, N., Jones, M.D., (2008). Climatic pacing of Mediterranean fire histories from lake sedimentary charcoal. Global and Planetary Change 63, 317324.Google Scholar
Umbanhowar, C.E., McGrath, M.J., (1998). Experimental production and analysis of microscopic charcoal from wood, leaves and grasses. The Holocene 8, 341346.CrossRefGoogle Scholar
Valdeyron, N., (2008). The mesolithic in France. Bailey, G., Spikins, P., Mesolithic Europe. Cambridge University Press, 182202.Google Scholar
Valsecchi, V., Carraro, G., Conedera, M., Tinner, W., (2010). Late-Holocene vegetation and land-use dynamics in the southern Alps (Switzerland) as a basis for nature protection and forest management. The Holocene 20, 483495.Google Scholar
Vanniere, B., Galop, D., Rendu, C., Davasse, B., (2001). Feu et pratiques agro-pastorales dans les Pyr"n"es-Orientales : le cas de la montagne d'Enveitg (Cerdagne, Pyr"n"es-Orientales, France). Revue G"ographique des Pyr"n"es et du Sud-Ouest 11, 2942.Google Scholar
Vanni"re, B., Colombaroli, D., Chapron, E., Leroux, A., Tinner, W., Magny, M., (2008). Climate versus human-driven fire regimes in Mediterranean landscapes: the Holocene record of Lago dell'Accesa (Tuscany, Italy). Quaternary Science Reviews 27, 11811196.Google Scholar
Vanni"re, B., Colombaroli, D., Roberts, N., (2010). A fire paradox around the Mediterranean. PAGES News 18, 6365.Google Scholar
Vanni"re, B., Power, M.J., Roberts, N., Tinner, W., Carri"n, J., Magny, M., Bartlein, P., Colombaroli, D., Daniau, A.-L., Finsinger, W., Gil-Romera, G., Kaltenrieder, P., Magri, D., Pini, R., Sadori, L., Turner, R., Valsecchi, V., Vescovi, E., (2011). Circum-Mediterranean fire activity and climate changes during the mid-Holocene environmental transition (8500"2500 cal.BP). The Holocene 21, 5373.Google Scholar
Whitlock, C., Millspaugh, S.H., (1996). Testing the assumptions of fire-history studies: an examination of modern charcoal accumulation in Yellowstone National Park, USA. The Holocene 6, 715.CrossRefGoogle Scholar
Whitlock, C., Higuera, P.E., McWethy, D.B., Briles, C.E., (2010). Paleoecological perspectives on fire ecology: revisiting the fire-regime concept. The Open Ecology Journal 3, 623.Google Scholar
Zapata, L., Pe"a-Chocarro, L., P"rez-Jord", G., Stika, H.-S., (2004). Early Neolithic agriculture in the Iberian Peninsula. Journal of World Prehistory 18, 283325.Google Scholar