Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-24T07:43:54.192Z Has data issue: false hasContentIssue false

Holocene glacier history of northeastern Cordillera Darwin, southernmost South America (55°S)

Published online by Cambridge University Press:  16 August 2021

Scott A. Reynhout
Affiliation:
Departamento de Geología, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, 8370450Santiago, Chile Núcleo Milenio Paleoclima, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Chile
Michael R. Kaplan
Affiliation:
Lamont-Doherty Earth Observatory, Palisades, New York10964-100, USA
Esteban A. Sagredo*
Affiliation:
Núcleo Milenio Paleoclima, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Chile Instituto de Geografía, Pontificia Universidad Católica de Chile, 7820436Macul, Chile Estación Patagonia de Investigaciones Interdisciplinarias UC, Pontificia Universidad Católica de Chile, 7820436Macul, Chile
Juan Carlos Aravena
Affiliation:
Centro de Investigación Gaia Antártica, Universidad de Magallanes, 6200000Punta Arenas, Chile
Rodrigo L. Soteres
Affiliation:
Núcleo Milenio Paleoclima, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Chile Instituto de Geografía, Pontificia Universidad Católica de Chile, 7820436Macul, Chile
Roseanne Schwartz
Affiliation:
Lamont-Doherty Earth Observatory, Palisades, New York10964-100, USA
Joerg M. Schaefer
Affiliation:
Lamont-Doherty Earth Observatory, Palisades, New York10964-100, USA Department of Earth and Environmental Sciences of Columbia University, New York, New York10027, USA
*
*Corresponding author e-mail address:[email protected]

Abstract

In the Cordillera Darwin, southernmost South America, we used 10Be and 14C dating, dendrochronology, and historical observations to reconstruct the glacial history of the Dalla Vedova valley from deglacial time to the present. After deglacial recession into northeastern Darwin and Dalla Vedova, by ~16 ka, evidence indicates a glacial advance at ~13 ka coeval with the Antarctic Cold Reversal. The next robustly dated glacial expansion occurred at 870 ± 60 calendar yr ago (approximately AD 1150), followed by less-extensive dendrochronologically constrained advances from shortly before AD 1836 to the mid-twentieth century. Our record is consistent with most studies within the Cordillera Darwin that show that the Holocene glacial maximum occurred during the last millennium. This pattern contrasts with the extensive early- and mid-Holocene glacier expansions farther north in Patagonia; furthermore, an advance at 870 ± 60 yr ago may suggest out-of-phase glacial advances occurred within the Cordillera Darwin relative to Patagonia. We speculate that a southward shift of westerlies and associated climate regimes toward the southernmost tip of the continent, about 900–800 yr ago, provides a mechanism by which some glaciers advanced in the Cordillera Darwin during what is generally considered a warm and dry period to the north in Patagonia.

Type
Research Article
Copyright
Copyright © University of Washington. Published by Cambridge University Press, 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abram, N.J., Mulvaney, R., Vimeux, F., Phipps, S.J., Turner, J., England, M.H., 2014. Evolution of the Southern Annular Mode during the past millennium. Nature Climate Change 4, 564.10.1038/nclimate2235CrossRefGoogle Scholar
Agosta, E., Compagnucci, R., Ariztegui, D., 2015. Precipitation linked to Atlantic moisture transport: clues to interpret Patagonian palaeoclimate. Climate Research 62, 219240.10.3354/cr01272CrossRefGoogle Scholar
Aguirre, F., Carrasco, J., Sauter, T., Schneider, C., Gaete, K., Garín, E., Adaros, R., Butorovic, N., Jaña, R., Casassa, G., 2018. Snow cover change as a climate indicator in Brunswick Peninsula, Patagonia. Frontiers in Earth Science 6, 130.10.3389/feart.2018.00130CrossRefGoogle Scholar
Aniya, M., 2013. Holocene glaciations of Hielo Patagónico (Patagonia Icefield), South America: a brief review. Geochemical Journal 47, 97105.10.2343/geochemj.1.0171CrossRefGoogle Scholar
Aravena, J., Luckman, B.H., 2009. Spatio-temporal rainfall patterns in southern South America. International Journal of Climatology 29, 21062120.10.1002/joc.1761CrossRefGoogle Scholar
Balco, G., Stone, J.O., Lifton, N.A., Dunai, T.J., 2008. A complete and easily accessible means of calculating surface exposure ages or erosion rates from 10Be and 26Al measurements. Quaternary Geochronology 3, 174195.10.1016/j.quageo.2007.12.001CrossRefGoogle Scholar
Beedle, M.J., Menounos, B., Luckman, B.H., Wheate, R., 2009. Annual push moraines as climate proxy. Geophysical Research Letters 36. https://doi.org/https://doi.org/10.1029/2009GL039533CrossRefGoogle Scholar
Bentley, M.J., McCulloch, R.D., 2005. Impact of neotectonics on the record of glacier and sea level fluctuations, Strait of Magellan, southern Chile. Geografiska Annaler Series A Physical Geography 87, 393402.10.1111/j.0435-3676.2005.00265.xCrossRefGoogle Scholar
Bertrand, S., Lange, C.B., Pantoja, S., Hughen, K., Van Tornhout, E., Wellner, J.S., 2017. Postglacial fluctuations of Cordillera Darwin glaciers (southernmost Patagonia) reconstructed from Almirantazgo fjord sediments. Quaternary Science Reviews 177, 265275.10.1016/j.quascirev.2017.10.029CrossRefGoogle Scholar
Björck, S., Rundgren, M., Ljung, K., Unkel, I., Wallin, Å., 2012. Multi-proxy analyses of a peat bog on Isla de los Estados, easternmost Tierra del Fuego: a unique record of the variable Southern Hemisphere Westerlies since the last deglaciation. Quaternary Science Reviews 42, 114.10.1016/j.quascirev.2012.03.015CrossRefGoogle Scholar
Boex, J., Fogwill, C., Harrison, S., Glasser, N.F., Hein, A., Schnabel, C., Xu, S., 2013. Rapid thinning of the late Pleistocene Patagonian Ice Sheet followed migration of the Southern Westerlies. Scientific Reports 3, 2118.10.1038/srep02118CrossRefGoogle ScholarPubMed
Bown, F., Rivera, A., Zenteno, P., Bravo, C., Cawkwell, F., 2014. First glacier inventory and recent glacier variation on Isla Grande de Tierra Del Fuego and adjacent islands in southern Chile. In: Kargel, J.S., Leonard, G.J., Bishop, M.P., Kääb, A., Raup, B.H. (Eds.), Global Land Ice Measurements from Space. Springer, Berlin, pp. 661674.10.1007/978-3-540-79818-7_28CrossRefGoogle Scholar
Boyd, B.L., Anderson, J.B., Wellner, J.S., Fernández, R.A., 2008. The sedimentary record of glacial retreat, Marinelli Fjord, Patagonia: regional correlations and climate ties. Marine Geology 255, 165178.10.1016/j.margeo.2008.09.001CrossRefGoogle Scholar
Bujalesky, G.G., 2007. Coastal geomorphology and evolution of Tierra del Fuego (Southern Argentina). Geologica Acta 5, 337362.Google Scholar
Carrasco, J.F., Casassa, G., Rivera, A., 2002. Meteorological and climatological aspects of the southern Patagonia Icefield. In: Casassa, G., Sepúlveda, F. V., Sinclair, R.M. (Eds.), The Patagonian Icefields: A Unique Natural Laboratory for Environmental and Climate Change Studies. Springer, Boston, pp. 2941.10.1007/978-1-4615-0645-4_4CrossRefGoogle Scholar
Clark, P.U., Dyke, A.S., Shakun, J.D., Carlson, A.E., Clark, J., Wohlfarth, B., Mitrovica, J.X., Hostetler, S.W., McCabe, A.M., 2009. The Last Glacial Maximum. Science 325, 710714.10.1126/science.1172873CrossRefGoogle ScholarPubMed
Darvill, C.M., Bentley, M.J., Stokes, C.R., 2015. Geomorphology and weathering characteristics of erratic boulder trains on Tierra del Fuego, southernmost South America: implications for dating of glacial deposits. Geomorphology 228, 382397.10.1016/j.geomorph.2014.09.017CrossRefGoogle Scholar
Darvill, C.M., Stokes, C.R., Bentley, M.J., Lovell, H., 2014. A glacial geomorphological map of the southernmost ice lobes of Patagonia: the Bahía Inútil–San Sebastián, Magellan, Otway, Skyring and Río Gallegos lobes. Journal of Maps 10, 500520.10.1080/17445647.2014.890134CrossRefGoogle Scholar
Davies, B.J., Darvill, C.M., Lovell, H., Bendle, J.M., Dowdeswell, J.A., Fabel, D., García, J.-L., et al. , 2020. The evolution of the Patagonian Ice Sheet from 35 ka to the present day (PATICE). Earth-Science Reviews 204, 103152.10.1016/j.earscirev.2020.103152CrossRefGoogle Scholar
Evenson, E., Burkhart, P., Gosse, J., Baker, G., Jackofsky, D., Meglioli, A., Dalziel, I., Kraus, S., Alley, R., Berti, C., 2009. Enigmatic boulder trains, supraglacial rock avalanches, and the origin of “Darwin's boulders,” Tierra del Fuego. GSA Today 19, 410.10.1130/GSATG72A.1CrossRefGoogle Scholar
Fernández, R., Gulick, S., Rodrigo, C., Domack, E., Leventer, A., 2017. Seismic stratigraphy and glacial cycles in the inland passages of the Magallanes Region of Chile, southernmost South America. Marine Geology 386, 1931.10.1016/j.margeo.2017.02.006CrossRefGoogle Scholar
Fogt, R.L., Marshall, G.J., 2020. The Southern Annular Mode: variability, trends, and climate impacts across the Southern Hemisphere. Wiley Interdisciplinary Reviews Climate Change 11, e652.10.1002/wcc.652CrossRefGoogle Scholar
Frangi, J.L., Richter, L.L., Barrera, M.D., Aloggia, M., 1997. Decomposition of Nothofagus fallen woody debris in forests of Tierra del Fuego, Argentina. Canadian Journal of Forest Research 27, 10951102.10.1139/x97-060CrossRefGoogle Scholar
García, J.-L., Hall, B.L., Kaplan, M.R., Gómez, G.A., De Pol-Holz, R., García, V.J., Schaefer, J.M., Schwartz, R., 2020. 14C and 10Be dated Late Holocene fluctuations of Patagonian glaciers in Torres del Paine (Chile, 51° S) and connections to Antarctic climate change. Quaternary Science Reviews 246, 106541.10.1016/j.quascirev.2020.106541CrossRefGoogle Scholar
Garreaud, R., Lopez, P., Minvielle, M., Rojas, M., 2013. Large-scale control on the Patagonian climate. Journal of Climate 26, 215230.10.1175/JCLI-D-12-00001.1CrossRefGoogle Scholar
González-Reyes, Á., Aravena, J.C., Muñoz, A.A., Soto-Rogel, P., Aguilera-Betti, I., Toledo-Guerrero, I., 2017. Variabilidad de la precipitación en la ciudad de Punta Arenas, Chile, desde principios del siglo XX. Anales del Instituto de la Patagonia 45, 3144.10.4067/S0718-686X2017000100031CrossRefGoogle Scholar
Gordillo, S., Bujalesky, G.G., Pirazzoli, P.A., Rabassa, J.O., Saliège, J.-F., 1992. Holocene raised beaches along the northern coast of the Beagle Channel, Tierra del Fuego, Argentina. Palaeogeography, Palaeoclimatology, Palaeoecology 99, 4154.10.1016/0031-0182(92)90006-QCrossRefGoogle Scholar
Hall, B.L., Lowell, T. V, Bromley, G.R.M., Denton, G.H., Putnam, A.E., 2019. Holocene glacier fluctuations on the northern flank of Cordillera Darwin, southernmost South America. Quaternary Science Reviews 222, 105904.10.1016/j.quascirev.2019.105904CrossRefGoogle Scholar
Hall, B.L., Porter, C.T., Denton, G.H., Lowell, T. V., Bromley, G.R.M., 2013. Extensive recession of Cordillera Darwin glaciers in southernmost South America during Heinrich Stadial 1. Quaternary Science Reviews 62, 4955.10.1016/j.quascirev.2012.11.026CrossRefGoogle Scholar
Heiri, O., Lotter, A., Lemcke, G., 2001. Loss on ignition as a method for estimating organic and carbonate content in sediments: reproducibility and comparability of results. Journal of Paleolimnology 25, 101110.10.1023/A:1008119611481CrossRefGoogle Scholar
Hervé, F., Fanning, C.M., Pankhurst, R.J., Mpodozis, C., Klepeis, K., Calderón, M., Thomson, S.N., 2010. Detrital zircon SHRIMP U–Pb age study of the Cordillera Darwin Metamorphic Complex of Tierra del Fuego: sedimentary sources and implications for the evolution of the Pacific margin of Gondwana. Journal of the Geological Society of London 167, 555568.10.1144/0016-76492009-124CrossRefGoogle Scholar
Hogg, A.G., Heaton, T.J., Hua, Q., Palmer, J.G., Turney, C.S.M., Southon, J., Bayliss, A., Blackwell, P.G., Boswijk, G., Bronk Ramsey, C., Pearson, C., Petchey, F., Reimer, P., Reimer, R., Wacker, L., 2020. SHCal20 Southern Hemisphere Calibration, 0–55,000 Years cal BP. Radiocarbon 62, 759778.10.1017/RDC.2020.59CrossRefGoogle Scholar
Holmlund, P., Fuenzalida, H., 1995. Anomalous glacier responses to 20th century climatic changes in Darwin Cordillera, southern Chile. Journal of Glaciology 41, 465473.10.1017/S0022143000034808CrossRefGoogle Scholar
Ivins, E.R., James, T.S., 2004. Bedrock response to Llanquihue Holocene and present-day glaciation in southernmost South America. Geophysical Research Letters 31, L24613.10.1029/2004GL021500CrossRefGoogle Scholar
Kaplan, M.R., Coronato, A., Hulton, N.R.J., Rabassa, J.O., Kubik, P.W., Freeman, S.P.H.T., 2007. Cosmogenic nuclide measurements in southernmost South America and implications for landscape change. Geomorphology 87, 284301.CrossRefGoogle Scholar
Kaplan, M.R., Fogwill, C.J., Sugden, D.E., Hulton, N.R.J., Kubik, P.W., Freeman, S.P.H.T., 2008. Southern Patagonian glacial chronology for the Last Glacial period and implications for Southern Ocean climate. Quaternary Science Reviews 27, 284294.10.1016/j.quascirev.2007.09.013CrossRefGoogle Scholar
Kaplan, M.R., Schaefer, J.M., Strelin, J.A., Denton, G.H., Anderson, R.F., Vandergoes, M.J., Finkel, R.C., et al. , 2016. Patagonian and southern South Atlantic view of Holocene climate. Quaternary Science Reviews 141, 112125.10.1016/j.quascirev.2016.03.014CrossRefGoogle Scholar
Kaplan, M.R., Strelin, J.A., Schaefer, J.M., Denton, G.H., Finkel, R.C., Schwartz, R., Putnam, A.E., Vandergoes, M.J., Goehring, B.M., Travis, S.G., 2011. In-situ cosmogenic 10Be production rate at Lago Argentino, Patagonia: implications for late-glacial climate chronology. Earth and Planetary Science Letters 309, 2132.10.1016/j.epsl.2011.06.018CrossRefGoogle Scholar
Kaplan, M.R., Strelin, J.A., Schaefer, J.M., Peltier, C., Martini, M.A., Flores, E., Winckler, G., Schwartz, R., 2020. Holocene glacier behavior around the northern Antarctic Peninsula and possible causes. Earth and Planetary Science Letters 534, 116077.CrossRefGoogle Scholar
Kelly, M.A., 2003. The Late Würmian Age in the Western Swiss Alps—Last Glacial Maximum (LGM) Ice-Surface Reconstruction and 10Be Dating of Late-Glacial Features. Unpublished PhD Thesis, Naturwissenschaften, Bern.Google Scholar
Koch, J., Kilian, R., 2005. “Little Ice Age” glacier fluctuations, Gran Campo Nevado, southernmost Chile. The Holocene 15, 2028.10.1191/0959683605hl780rpCrossRefGoogle Scholar
Kuylenstierna, J.L., Rosqvist, G.C., Holmlund, P., 1996. Late-Holocene glacier variations in the Cordillera Darwin, Tierra del Fuego, Chile. The Holocene 6, 353358.10.1177/095968369600600310CrossRefGoogle Scholar
Lal, D., 1991. Cosmic ray labeling of erosion surfaces: in situ nuclide production rates and erosion models. Earth and Planetary Science Letters 104, 424439.CrossRefGoogle Scholar
Lamy, F., Kilian, R., Arz, H.W., Francois, J.-P., Kaiser, J., Prange, M., Steinke, T., 2010. Holocene changes in the position and intensity of the southern westerly wind belt. Nature Geoscience 3, 695.CrossRefGoogle Scholar
Lifton, N., Sato, T., Dunai, T.J., 2014. Scaling in situ cosmogenic nuclide production rates using analytical approximations to atmospheric cosmic-ray fluxes. Earth and Planetary Science Letters 386, 149160. https://doi.org/10.1016/J.EPSL.2013.10.052CrossRefGoogle Scholar
Lizarralde, M., Escobar, J., Deferrari, G., 2004. Invader species in Argentina: a review about the beaver (Castor canadensis) population situation on Tierra del Fuego ecosystem. Interciencia 29, 352356.Google Scholar
López, P., Chevallier, P., Favier, V., Pouyaud, B., Ordenes, F., Oerlemans, J., 2010. A regional view of fluctuations in glacier length in southern South America. Global and Planetary Change 71, 85108.10.1016/j.gloplacha.2009.12.009CrossRefGoogle Scholar
Luckman, B.H., 2000. The Little Ice Age in the Canadian Rockies. Geomorphology 32, 357384.10.1016/S0169-555X(99)00104-XCrossRefGoogle Scholar
Marshall, G.J., 2003. Trends in the Southern Annular Mode from observations and reanalyses. Journal of Climate 41344143.2.0.CO;2>CrossRefGoogle Scholar
Masiokas, M.H., Rivera, A., Espizua, L.E., Villalba, R., Delgado, S., Aravena, J.C., 2009. Glacier fluctuations in extratropical South America during the past 1000 years. Palaeogeography, Palaeoclimatology, Palaeoecology 281, 242268.10.1016/j.palaeo.2009.08.006CrossRefGoogle Scholar
McCarthy, D.P., Luckman, B.H., Kelly, P.E., 1991. Sampling height-age error correction for spruce seedlings in glacial forefields, Canadian Cordillera. Arctic and Alpine Research 23, 451455.10.2307/1551687CrossRefGoogle Scholar
McCulloch, R.D., Bentley, M.J., Tipping, R.M., Clapperton, C.M., 2005a. Evidence for late-glacial ice dammed lakes in the central Strait of Magellan and Bahía Inútil, southernmost South America. Geografiska Annaler Series A Physical Geography 87, 335362.10.1111/j.0435-3676.2005.00262.xCrossRefGoogle Scholar
McCulloch, R.D., Fogwill, C.J., Sugden, D.E., Bentley, M.J., Kubik, P.W., 2005b. Chronology of the last glaciation in central Strait of Magellan and Bahía Inútil, southernmost South America. Geografiska Annaler Series A Physical Geography 87, 289312.CrossRefGoogle Scholar
Meier, W.J.-H., Aravena, J.-C., Grießinger, J., Hochreuther, P., Soto-Rogel, P., Zhu, H., Pol-Holz, R. De, Schneider, C., Braun, M.H., 2019. Late Holocene glacial fluctuations of Schiaparelli glacier at Monte Sarmiento massif, Tierra del Fuego (54 24′ S). Geosciences 9, 340.10.3390/geosciences9080340CrossRefGoogle Scholar
Melkonian, A.K., Willis, M.J., Pritchard, M.E., Rivera, A., Bown, F., Bernstein, S.A., 2013. Satellite-derived volume loss rates and glacier speeds for the Cordillera Darwin Icefield, Chile. Cryosphere 7, 823839.10.5194/tc-7-823-2013CrossRefGoogle Scholar
Mendelová, M., Hein, A.S., Rodés, Á., Xu, S., 2020. Extensive mountain glaciation in central Patagonia during Marine Isotope Stage 5. Quaternary Science Reviews 227, 105996.10.1016/j.quascirev.2019.105996CrossRefGoogle Scholar
Mendoza, L., Perdomo, R., Hormaechea, J.L., Cogliano, D. Del, Fritsche, M., Richter, A., Dietrich, R., 2011. Present-day crustal deformation along the Magallanes-Fagnano Fault System in Tierra del Fuego from repeated GPS observations. Geophysical Journal International 184, 10091022.10.1111/j.1365-246X.2010.04912.xCrossRefGoogle Scholar
Menounos, B., Clague, J.J., Osborn, G., Davis, P.T., Ponce, F., Goehring, B., Maurer, M., Rabassa, J., Coronato, A., Marr, R., 2013. Latest Pleistocene and Holocene glacier fluctuations in southernmost Tierra del Fuego, Argentina. Quaternary Science Reviews 77, 7079.10.1016/j.quascirev.2013.07.008CrossRefGoogle Scholar
Menounos, B., Maurer, L., Clague, J.J., Osborn, G., 2020. Late Holocene fluctuations of Stoppani glacier, southernmost Patagonia. Quaternary Research 95, 5664.10.1017/qua.2019.87CrossRefGoogle Scholar
Miller, A., 1976. The Climate of Chile. In: Schwerdtfeger, W. (Ed.), World Survey of Climatology. Elsevier, Amsterdam, pp. 113130.Google Scholar
Möller, M., Schneider, C., Kilian, R., 2007. Glacier change and climate forcing in recent decades at Gran Campo Nevado, southernmost Patagonia. Annals of Glaciology 46, 136144.10.3189/172756407782871530CrossRefGoogle Scholar
Moreno, P.I., Vilanova, I., Villa-Martínez, R., Dunbar, R.B., Mucciarone, D.A., Kaplan, M.R., Garreaud, R.D., et al. , 2018. Onset and evolution of Southern Annular Mode-like changes at centennial timescale. Scientific Reports 8, 3458.10.1038/s41598-018-21836-6CrossRefGoogle ScholarPubMed
Nelson, E.P., 1982. Post-tectonic uplift of the Cordillera Darwin orogenic core complex: evidence from fission track geochronology and closing temperature–time relationships. Journal of the Geological Society of London 139, 755761.10.1144/gsjgs.139.6.0755CrossRefGoogle Scholar
Nishiizumi, K., Imamura, M., Caffee, M.W., Southon, J.R., Finkel, R.C., McAninch, J., 2007. Absolute calibration of 10Be AMS standards. Nuclear Instruments and Methods in Physics Research B 258, 403413.10.1016/j.nimb.2007.01.297CrossRefGoogle Scholar
Pedro, J.B., Bostock, H.C., Bitz, C.M., He, F., Vandergoes, M.J., Steig, E.J., Chase, B.M., et al. , 2016. The spatial extent and dynamics of the Antarctic Cold Reversal. Nature Geoscience 9, 5155.10.1038/ngeo2580CrossRefGoogle Scholar
Peltier, C., Kaplan, M.R., Birkel, S.D., Soteres, R.L., Sagredo, E.A., Aravena, J.C., Araos, J., Moreno, P.I., Schwartz, R., Schaefer, J.M., 2021. The large MIS 4 and long MIS 2 glacier maxima on the southern tip of South America. Quaternary Science Reviews 262, 106858.10.1016/j.quascirev.2021.106858CrossRefGoogle Scholar
Porter, C., Santana, A., 2003. Rapid 20th century retreat of Ventisquero Marinelli in the Cordillera Darwin icefield. Anales del Instituto de la Patagonia 31, 1726.Google Scholar
Porter, S.C., Stuiver, M., Heusser, C.J., 1984. Holocene sea-level changes along the Strait of Magellan and Beagle Channel, southernmost South America. Quaternary Research 22, 5967.10.1016/0033-5894(84)90006-1CrossRefGoogle Scholar
Rabassa, J., Coronato, A., Bujalesky, G., Salemme, M., Roig, C., Meglioli, A., Heusser, C., et al. , 2000. Quaternary of Tierra del Fuego, Southernmost South America: an updated review. Quaternary International 68–71, 217240.10.1016/S1040-6182(00)00046-XCrossRefGoogle Scholar
Rasmussen, L.A., Conway, H., Raymond, C.F., 2007. Influence of upper air conditions on the Patagonia icefields. Global and Planetary Change 59, 203216.10.1016/j.gloplacha.2006.11.025CrossRefGoogle Scholar
Rebertus, A.J., Veblen, T.T., 1993. Structure and tree-fall gap dynamics of old-growth Nothofagus forests in Tierra del Fuego, Argentina. Journal of Vegetation Science 4, 641654.CrossRefGoogle Scholar
Reynhout, S.A., Sagredo, E.A., Kaplan, M.R., Aravena, J.C., Martini, M.A., Moreno, P.I., Rojas, M., Schwartz, R., Schaefer, J.M., 2019. Holocene glacier fluctuations in Patagonia are modulated by summer insolation intensity and paced by Southern Annular Mode-like variability. Quaternary Science Reviews 220, 178187.10.1016/j.quascirev.2019.05.029CrossRefGoogle Scholar
Rignot, E., Rivera, A., Casassa, G., 2003. Contribution of the Patagonia Icefields of South America to Sea Level Rise. Science 302, 434437.10.1126/science.1087393CrossRefGoogle ScholarPubMed
Rosenblüth, B., Fuenzalida, H.A., Aceituno, P., 1997. Recent temperature variations in southern South America. International Journal of Climatology 17, 6785.10.1002/(SICI)1097-0088(199701)17:1<67::AID-JOC120>3.0.CO;2-G3.0.CO;2-G>CrossRefGoogle Scholar
Sagredo, E.A., Kaplan, M.R., Araya, P.S., Lowell, T. V., Aravena, J.C., Moreno, P.I., Kelly, M.A., Schaefer, J.M., 2018. Trans-pacific glacial response to the Antarctic Cold Reversal in the southern mid-latitudes. Quaternary Science Reviews 188, 160166.CrossRefGoogle Scholar
Sagredo, E.A., Lowell, T.V., 2012. Climatology of Andean glaciers: a framework to understand glacier response to climate change. Global and Planetary Change 86–87, 101109.10.1016/j.gloplacha.2012.02.010CrossRefGoogle Scholar
Sagredo, E.A., Rupper, S., Lowell, T. V., 2014. Sensitivities of the equilibrium line altitude to temperature and precipitation changes along the Andes. Quaternary Research 81, 355366.10.1016/j.yqres.2014.01.008CrossRefGoogle Scholar
Sandoval, F.B., De Pascale, G.P., 2020. Slip rates along the narrow Magallanes fault System, tierra Del fuego Region, patagonia. Scientific Reports 10, 113.10.1038/s41598-020-64750-6CrossRefGoogle Scholar
Schaefer, J.M., Denton, G.H., Kaplan, M., Putnam, A., Finkel, R.C., Barrell, D.J.A., Andersen, B.G., et al. , 2009. High-frequency Holocene glacier fluctuations in New Zealand differ from the northern signature. Science 324, 622625.CrossRefGoogle ScholarPubMed
Schneider, C., Glaser, M., Kilian, R., Santana, A., Butorovic, N., Casassa, G., 2003. Weather observations across the southern Andes at 53°S. Physical Geography 24, 97119.10.2747/0272-3646.24.2.97CrossRefGoogle Scholar
Sigafoos, R.S., Hendricks, E.L., 1969. The Time Interval between Stabilization of Alpine Glacial Deposits and Establishment of Tree Seedlings. U.S. Geological Survey Professional Paper 650, U.S. Geological Survey, Denver.Google Scholar
Soteres, R.L., Peltier, C., Kaplan, M.R., Sagredo, E.A., 2020. Glacial geomorphology of the Strait of Magellan ice lobe, southernmost Patagonia, South America. Journal of Maps 16, 299312.CrossRefGoogle Scholar
Stern, C.R., 2008. Holocene tephrochronology record of large explosive eruptions in the southernmost Patagonian Andes. Bulletin of Volcanology 70, 435454.10.1007/s00445-007-0148-zCrossRefGoogle Scholar
Stokes, M.A., 1996. An Introduction to Tree-Ring Dating. University of Arizona Press, Tucson.Google Scholar
Stone, J.O., 2000. Air pressure and cosmogenic isotope production. Journal of Geophysical Research: Solid Earth 105, 2375323759.CrossRefGoogle Scholar
Strelin, J.A., Denton, G.H., Vandergoes, M.J., Ninnemann, U.S., Putnam, A.E., 2011. Radiocarbon chronology of the late-glacial Puerto Bandera moraines, Southern Patagonian Icefield, Argentina. Quaternary Science Reviews 30, 25512569.10.1016/j.quascirev.2011.05.004CrossRefGoogle Scholar
Strelin, J.A., Kaplan, M.R., Vandergoes, M.J., Denton, G.H., Schaefer, J.M., 2014. Holocene glacier history of the Lago Argentino basin, Southern Patagonian Icefield. Quaternary Science Reviews 101, 124145.10.1016/j.quascirev.2014.06.026CrossRefGoogle Scholar
Strelin, J., Casassa, G., Rosqvist, G., Holmlund, P., 2008. Holocene glaciations in the Ema Glacier valley, Monte Sarmiento Massif, Tierra del Fuego. Palaeogeography, Palaeoclimatology, Palaeoecology 260, 299314.10.1016/j.palaeo.2007.12.002CrossRefGoogle Scholar
Strelin, J., Iturraspe, R., 2007. Recent evolution and mass balance of Cordón Martial glaciers, Cordillera Fueguina Oriental. Global and Planetary Change 59, 1726.10.1016/j.gloplacha.2006.11.019CrossRefGoogle Scholar
Stuiver, M., Reimer, P.J., Reimer, R.W., 2021. CALIB 8.2 [WWW program] (accessed May 27, 2021). http://calib.org.Google Scholar
Van Daele, M., Bertrand, S., Meyer, I., Moernaut, J., Vandoorne, W., Siani, G., Tanghe, N., et al. , 2016. Late Quaternary evolution of Lago Castor (Chile, 45.6°S): timing of the deglaciation in northern Patagonia and evolution of the southern westerlies during the last 17 kyr. Quaternary Science Reviews 133, 130146.10.1016/j.quascirev.2015.12.021CrossRefGoogle Scholar
Vanneste, H., De Vleeschouwer, F., Bertrand, S., Martínez-Cortizas, A., Vanderstraeten, A., Mattielli, N., Coronato, A., et al. , 2016. Elevated dust deposition in Tierra del Fuego (Chile) resulting from Neoglacial Darwin Cordillera glacier fluctuations. Journal of Quaternary Science 31, 713722.10.1002/jqs.2896CrossRefGoogle Scholar
Villa-Martínez, R., Moreno, P.I., Valenzuela, M.A., 2012. Deglacial and postglacial vegetation changes on the eastern slopes of the central Patagonian Andes (47°S). Quaternary Science Reviews 32, 8699.10.1016/j.quascirev.2011.11.008CrossRefGoogle Scholar
Villalba, R., Lara, A., Boninsegna, J.A., Masiokas, M., Delgado, S., Aravena, J.C., Roig, F.A., Schmelter, A., Wolodarsky, A., Ripalta, A., 2003. Large-scale temperature changes across the southern Andes: 20th-century variations in the context of the past 400 years. Climatic Change 59, 177232.10.1023/A:1024452701153CrossRefGoogle Scholar
Villalba, R., Lara, A., Masiokas, M.H., Urrutia, R., Luckman, B.H., Marshall, G.J., Mundo, I.A., et al. , 2012. Unusual Southern Hemisphere tree growth patterns induced by changes in the Southern Annular Mode. Nature Geoscience 5, 793.10.1038/ngeo1613CrossRefGoogle Scholar
Xia, Z., Yu, Z., Loisel, J., 2018. Centennial-scale dynamics of the Southern Hemisphere westerly winds across the Drake Passage over the past two millennia. Geology 46, 855858.10.1130/G40187.1CrossRefGoogle Scholar
Yuan, X., Kaplan, M.R., Cane, M.A., 2018. The interconnected global climate system—a review of tropical-polar teleconnections. Journal of Climate 31, 57655792.10.1175/JCLI-D-16-0637.1CrossRefGoogle Scholar