Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-26T18:11:11.224Z Has data issue: false hasContentIssue false

Holocene environment and subsistence patterns near the Tree Shelter, Red Sea Mountains, Egypt

Published online by Cambridge University Press:  20 January 2017

Elena Marinova*
Affiliation:
Center for Archaeological Sciences, Katholieke Universiteit Leuven, Celestijnenlaan 200E, 3001 Leuven, Belgium
Veerle Linseele
Affiliation:
Center for Archaeological Sciences, Katholieke Universiteit Leuven, Celestijnenlaan 200E, 3001 Leuven, Belgium
Pierre Vermeersch
Affiliation:
Physical and Regional Geography Research Group, Katholieke Universiteit Leuven, Celestijnenlaan 200E, 3001 Leuven, Belgium
*
*Corresponding author. Fax: +32 0 16 32 29 00. E-mail address:[email protected] (E. Marinova).

Abstract

The Tree Shelter site dates to the Early to Mid-Holocene (8000 to 4900 14C yr BP). Present conditions around the site are hyperarid, but charcoal remains indicate less severe aridity at the time of its occupation. The environment around the site then supported a rich wadi vegetation, which allowed hunting during the Epipaleolithic and herding during the Neolithic occupation. Although more favorable than today, the environmental conditions also displayed a desert character and seem to have limited the range of domestic herbivores introduced in the area.

Type
Short Paper
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andersen, G.L., Krzywinski, K., (2007). Mortality, recruitment and change of desert tree populations in a hyperarid environment. PLoSONE 2, (2) e208 CrossRefGoogle Scholar
Arz, H.W., Lamy, F., Pätzold, J., Müller, P.J., Prins, M., (2003). Mediterranean moisture source for an early-Holocene humid period in the northern Red Sea. Science 300, 118122.CrossRefGoogle ScholarPubMed
Barakat, H., (2001). Anthracological studies in the Neolithic sites of Nabta Playa, South Egypt. Wendorf, F., Schild, R., Associates (Eds.), Holocene settlement of the Egyptian Sahara—Vol. I : The archaeology of Nabta Playa. Kluwer Press, New York.592600.Google Scholar
Boessneck, J., Müller, H., Teichert, M., (1964). Osteologische Unterscheidungsmerkmale zwischen Schaf (Ovis aries Linne) und Ziege (Capra hircus Linne). Kühn-Archiv 78, (1–2) 19641129.Google Scholar
Bolten, A., Bubenzer, O., (2007). Watershed analysis in the Western Desert of Egypt. Bubenzer, O., Bolten, A., Darius, F. Atlas of Cultural and Environmental Change in Arid Africa Africa Praehistorica Volume 21, Köln, 2223.Google Scholar
Briggs, J., Badri, M., Mekki, A-M., (1999). Indigenous knowledges and vegetation use among bedouin in the Eastern Desert of Egypt. Applied Geography 19, 87103.CrossRefGoogle Scholar
Bubenzer, O., Riemer, H., (2007). Holocene climatic change and human settlement between the Central Sahara and the Nile Valley: Archaeological and geomorphological results. Geoarchaeology 22, 607620.CrossRefGoogle Scholar
Butzer, K., (1999). Climatic history. Bard, K. Encyclopedia of the Archaeology of Egypt Routledge, London.195198.Google Scholar
Cappers, R.T.J., (2006). Roman foodprints at Berenike. Archaeobotanical evidence of trade and subsistence in the Eastern Desert of Egypt.. Monograph 55, . Cotsen Institute of Archaeology, UCLA..Google Scholar
Dahl, G., Hjort, A., (1976). Having herds: Pastoral herd growth and household economy. Stockholm Studies in Social Anthropology Volume 2, University of Stockholm, Sweden.Google Scholar
De Menocal, P., Ortiz, J., Guilderson, Sarnthein, M.(2000). Cocherent high and low-latitude climate variability during the Holocene Warm Period. Science 288, 21982202.CrossRefGoogle ScholarPubMed
Fahn, A., Werker, E., Baas, P., (1986). Wood Anatomy and Identification of Trees and Shrubs from Israel and Adjacent Regions. Israel Academy of Sciences, Jerusalem, Israel.CrossRefGoogle Scholar
Gabler, K.-O., (1985). Osteologische Unterscheidungsmerkmale am postkranialen Skelett zwischen Mähnenspringer (Ammotragus lervia), Hausschaf (Ovis aries) und Hausziege (Capra hircus). München Univ., Diss..Google Scholar
Gasse, F., (2000). Hydrological changes in the African tropics since the Last Glacial Maximum. Quaternary Science Reviews 19, 189211.CrossRefGoogle Scholar
Gautier, A., (2001). The Early to Late Neolithic archaeofaunas from Nabta and Bir Kiseiba. Wendorf, F., Schild, R., Associates (Eds.), Holocene settlement of the Egyptian Sahara. Volume 1. The Archaeology of Nabta Playa Kluwer Academic / Plenum Publishers, New York.609635.CrossRefGoogle Scholar
Gautier, A., (2002). The evidence for the earliest livestock in North Africa: or adventures with large bovids, ovicaprids, dogs and pigs. Hassan, F.A. Droughts, food and culture. Ecological change and food security in Africa's later prehistory Kluwer Academic / Plenum Publishers, New York / Boston / Dordrecht / London / Moscow.195207..Google Scholar
Hobbs, J.J., (1989). Bedouin life in the Egyptian wilderness. University of Texas Press, Austin.Google Scholar
Hoelzmann, Ph., Keding, B., Berke, H., Kröpelin, S., Kruse, H.-J., (2001). Environmental change and archaeology: lake evolution and human occupation in the Eastern Sahara during the Holocene. Paleogeography, Paleoclimatology, Paleoecology 169, 193217.CrossRefGoogle Scholar
Hoelzmann, Ph., Gasse, F., Dupont, L., Salzmann, U., Schtaubwasser, M., Leuschner, D., Siroko, F., (2004). Paleoenvironmental changes in the arid and subarid belt (Sahara–Sahel–Arabian peninsula) from 150 kyr to present. Battarbee, R., Gasse, F., Stickley, C. Past Climate Variability Through Europe and Africa Developments in Paleoenvironmental Research Volume 6, Springer, Dordrecht.219256.CrossRefGoogle Scholar
Kassas, M., Girgis, W.A., (1970). Habitat and plant communities in the Egyptian Desert: VII. Geographical facies of plant communities. The Journal of Ecology 58, 335350.CrossRefGoogle Scholar
Kuper, R., Kröpelin, S., (2006). Climate-controlled Holocene occupation in the Sahara: motor of Africa’s evolution. Science 313, 803807.CrossRefGoogle ScholarPubMed
Linseele, V., Marinova, E., Van Neer, W., Vermeersch, P., in press. Sites with Holocene dung deposits in the Eastern Desert of Egypt: visited by herders? Journal of Arid Environments.Google Scholar
McDonald, M.M.A., (1991). Origins of the Neolithic in the Nile Valley as seen from Dakhleh Oasis in the Egyptian Western Desert. Sahara 4, 4152.Google Scholar
Moeyersons, J., Vermeersch, P., Van Peer, P., Van Neer, W., Beeckman, H., De Coninck, E., (1996). Sodmein Cave Site, Red Sea Mountains, Egypt: development, stratigraphy and palaeoenvironment. Pwiti, G., Soper, R. Aspects of African archaeology. Papers 10th congr. PanAfrican Ass. Prehistory and Related Studies Harare, 5362.Google Scholar
Moeyersons, J., Vermeersch, P.M., Beeckman, H., Van Peer, P., (1999). Holocene environmental changes in the Gebel Umm Hammad, Eastern Desert, Egypt. Geomorphology 26, 297312.CrossRefGoogle Scholar
Moeyersons, J., Vermeersch, P.M., Van Peer, P., (2002). Dry cave deposits and their palaeoenvironmental significance during the last 115 ka, Sodmein Cave, Red Sea Mountains, Egypt. Quaternary Science Reviews 21, 837851.CrossRefGoogle Scholar
Neumann, K., (1989). Vegetationsgeschichte der Ostsahara im Holozän. Holzkohlen aus prähistorischen Fundstellen. Kuper, R. Forschungen zur Umweltgeschichte der Ostsahara Africa Praehistorica Volume 2, Köln, 13181.Google Scholar
Neumann, K., Schweingruber, F., Schoch, W., Détienne, P., (2001). Woods of the Sahara and the Sahel / Bois du Sahara et du Sahel / Hölzer der Sahara und des Sahel. Haupt, Bern.Google Scholar
Newton, C., (2005). Upper Egypt: vegetation at the beginning of the third millennium BC inferred from charcoal analysis at Adaı¨ma and Elkab. Journal of Archaeological Science 32, 355367.CrossRefGoogle Scholar
Newton, C., Midant-Reynes, B., (2007). Environmental change and settlement shifts in Upper Egypt during the Predinastic: charcoal analysis at Adaïma. The Holocene 18, 11091118.CrossRefGoogle Scholar
Osborn, D.J., Helmy, I., (1980). The contemporary land mammals of Egypt (Including Sinai). Fieldiana Zoology, New Ser. Volume 5, Chicago, .Google Scholar
Peters, J., (1986). Osteomorphology and osteometry of the appendicular skeleton of Grant’s Gazelle, Gazella granti (Brooke, 1872), Bohor Reedbuck, Redunca redunca (Pallas, 1767) and Bushbuck, Tragelaphus scriptus (Pallas, 1766), Occasional papers 2, Laboratorium voor Paleontologie. Ghent University, Ghent.Google Scholar
Reimer, P.J., Baillie, M.G.L., Bard, E., Bayliss, A., Beck, J.W., Bertrand, C.J.H., Blackwell, P.G., Buck, C.E., Burr, G.S., Cutler, K.B., Damon, P.E., Edwards, R.L., Fairbanks, R.G., Friedrich, M., Guilderson, T.P., Hogg, A.G., Hughen, K.A., Kromer, B., McCormac, G., Manning, S., Ramsey, C.B., Reimer, R.W., Remmele, S., Southon, J.R., Stuiver, M., Talamo, S., Taylor, F.W., van der Plicht, J., Weyhenmeyer, C.E., (2004). IntCal04 Terrestrial Radiocarbon Age Calibration, 0–26 cal kyr BP. Radiocarbon 46, (3) 10291059.Google Scholar
Schweingruber, F.H., (1990). Anatomy of European woods. Verlag Paul Haupt, Bern/Stuttgart.Google Scholar
Scott, L., (2005). The Holocene of middle altitude arid areas. Mackay, A., Battarbee, R., Birks, J., Oldfield, F. Global Change in the Holocene Hodder Arnold, London.396405.Google Scholar
Seeberg-Elverfeldt, I.A., Lange, C.B., Arz, H.W., Pätzold, J., Pike, J., (2004). The significance of diatoms in the formation of laminated sediments of the Shaban Deep, Northern Red Sea. Marine Geology 209, 279301.CrossRefGoogle Scholar
Stuiver, M., and Reimer, P.J. (1993). Radiocarbon. 35, 215230.Google Scholar
Vermeersch, P.M., (1978). L'Elkabien, Epipaléolithique de la vallée du Nil égyptien.. Universitaire Pers and Bruxelles Fondation égyptologique reine Elisabeth, Leuven.Google Scholar
Vermeersch, P.M., Paulissen, E., Huyge, D., Neumann, K., Van Neer, W., Van Peer, P., (1992). Predynastic Hearths in Upper Egypt. Friedman, R., Adams, B. The Followers of Horus Oxbow Monograph Volume 20, Oxford, 163172.Google Scholar
Vermeersch, P.M., Van Peer, P., Moeyersons, J., Van Neer, W., (1994). Sodmein Cave Site, Red Sea Mountains (Egypt). Sahara 3140.Google Scholar
Vermeersch, P.M., Van Peer, P., Moeyersons, J., Van Neer, W., (1996). Neolithic occupation of the Sodmein area, Red Sea Mountains, Egypt. Pwiti, G., Soper, R. Aspects of African archaeology. Papers 10th congr. PanAfrican Ass. Prehistory and Related Studies Harare, 411420.Google Scholar
Vermeersch, P., Van Peer, P., Moeyersons, J., Van Neer, W., (2002). The Tree Shelter, a Holocene Site in the Red Sea Mountains. Archéo-Nil 12, 123136.Google Scholar
Vermeersch, P.M., Moeyersons, J., Van Peer, P., Rots, V., Vanmontfort, B., (2008). Field work. Vermeersch, P.M. A Holocene prehistoric sequence in the Egyptian Red Sea area. The Tree Shelter. Egyptian Prehistory Monographs Leuven University Press, 1161.CrossRefGoogle Scholar
von Maydell, H.J., (1986). Trees and shrubs of the Sahel — their characteristics and uses.. GTZ 6MBH, EschbornGoogle Scholar
Walter, H., (1990). Vegetation und Klimazonen.. 6. Auflage. 382 S. Ulmer UTB 14.Google Scholar
Wendorf, F., Schild, R., Close, A.E., (1984). Cattle-keepers of the Eastern Sahara. The Neolithic of Bir Kiseiba. Southern Methodist University, Dallas.Google Scholar
Zahran, M., Willis, A., (1992). The Vegetation of Egypt. Chapman and Hall, London.CrossRefGoogle Scholar