Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-26T03:15:50.548Z Has data issue: false hasContentIssue false

Holocene East Asian monsoon variation inferred from species assemblage and shell chemistry of the ostracodes from Hulun Lake, Inner Mongolia

Published online by Cambridge University Press:  20 January 2017

Dayou Zhai
Affiliation:
Key Laboratory of Cenozoic Geology and Environment, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
Jule Xiao*
Affiliation:
Key Laboratory of Cenozoic Geology and Environment, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
Lang Zhou
Affiliation:
Key Laboratory of Cenozoic Geology and Environment, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
Ruilin Wen
Affiliation:
Key Laboratory of Cenozoic Geology and Environment, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
Zhigang Chang
Affiliation:
Key Laboratory of Cenozoic Geology and Environment, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
Xu Wang
Affiliation:
Key Laboratory of Cenozoic Geology and Environment, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
Xindi Jin
Affiliation:
State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
Qiqing Pang
Affiliation:
College of Resources, Shijiazhuang University of Economics, Shijiazhuang 050031, China
Shigeru Itoh
Affiliation:
Paleo Labo Co., Ltd., Saitama 335-0016, Japan
*
Corresponding author. Fax: +86 10 6201 0846.

Abstract

A sediment core from Hulun Lake, Inner Mongolia was analyzed for species assemblages and shell chemistry of ostracodes to investigate changes in the hydrology and climate of the East Asian summer monsoon margin during the Holocene. Darwinula stevensoni was abundant, Ilyocypris spp. scarce, littoral ostracodes absent and Mg/Ca, Sr/Ca and δ18O were low 11,100 to 8300 yr ago, indicating high lake levels and cool/fresh waters. Darwinula stevensoni declined largely, Ilyocypris spp. throve, littoral ostracodes were rare and chemical indicators remained in low values 8300 to 6200 yr ago, suggesting that the lake continued high stands but water became warm. The lake then contracted and water became cool/brackish 6200 to 4300 yr ago. Littoral ostracodes flourished 4300 to 3350 yr ago, marking the lowest lake levels of the entire Holocene. The lake level recovered and water salinity decreased 3350 to 1900 yr ago. From 1900 to 500 yr ago, the lake maintained the preceding status albeit lowered stands and increased salinities 1100 to 800 yr ago. During the recent 500 yr, the lake expanded and water salinity decreased. The data imply that the East Asian summer monsoon did not intensify until 8300 yr ago and weakened dramatically 4300 to 3350 yr ago.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

An, Z.S. The history and variability of the East Asian paleomonsoon climate. Quaternary Science Reviews 19, (2000). 171187.Google Scholar
Bond, G., Kromer, B., Beer, J., Muscheler, R., Evans, M.N., Showers, W., Hoffmann, S., Lotti-Bond, R., Hajdas, I., and Bonani, G. Persistent solar influence on North Atlantic climate during the Holocene. Science 294, (2001). 21302136.Google Scholar
Bronk Ramsey, C. Development of the radiocarbon calibration program. Radiocarbon 43, (2001). 355363.CrossRefGoogle Scholar
Chinese Academy of Sciences (Compilatory Commission of Physical Geography of China) Physical Geography of China: Climate. (1984). Science Press, Beijing. 130. (in Chinese) Google Scholar
Chivas, A.R., De Deckker, P., and Shelley, J.M.G. Magnesium content of non-marine ostracod shells: a new palaeosalinometer and palaeothermometer. Palaeogeography, Palaeoclimatology, Palaeoecology 54, (1986). 4361.CrossRefGoogle Scholar
COHMAP Members Climatic changes of the last 18, 000 years: observations and model simulations. Science 241, (1988). 10431052.Google Scholar
Compilatory Commission of Vegetation of China Vegetation of China. (1980). Science Press, Beijing. 932955. (in Chinese) Google Scholar
Danielopol, D.L., Handl, M., and Yin, Y. Benthic ostracods in the pre-alpine deep lake Mondsee: notes on the origin and distribution. McKenzie, K.G., and Jones, P.J. Ostracoda in the Earth and Life Sciences. Proceedings of the 11th International Symposium on Ostracoda, Rotterdam. (1993). 465480.Google Scholar
De Deckker, P., Chivas, A.R., and Shelley, J.M.G. Uptake of Mg and Sr in the euryhaline ostracod Cyprideis determined from in vitro experiments. Palaeogeography, Palaeoclimatology, Palaeoecology 148, (1999). 105116.Google Scholar
Delorme, L.D. Ostracodes as Quaternary paleoecological indicators. Canadian Journal of Earth Sciences 6, (1969). 14711476.Google Scholar
Fontes, J.C., Gasse, F., and Gibert, E. Holocene environmental changes in Lake Bangong basin (Western Tibet), part 1, chronology and stable isotopes of carbonates of a Holocene lacustrine core. Palaeogeography, Palaeoclimatology, Palaeoecology 120, (1996). 2547.Google Scholar
Forester, R.M., Smith, A.J., Palmer, D.F., and Curry, B.B. North American Non-Marine Ostracode Database “NANODe” Version 1. (2005). Kent State University, Kent. Available at http://www.kent.edu/NANODe Google Scholar
Grimm, E.C. CONISS: a FORTRAN 77 program for stratigraphically constrained cluster analysis by the method of incremental sum of squares. Computers and Geosciences 13, (1987). 1335.Google Scholar
Gouramanis, C., and De Deckker, P. Alkalinity control on the partition coefficients in lacustrine ostracodes from Australia. Geology 38, (2010). 359362.Google Scholar
Hiller, D. Untersuchungen zur Biologie und zur Ökologie limnischer Ostracoden aus der Umgebung von Hamburg. Archiv für Hydrobiologie, Supplement-Band 40, (1972). 400497.Google Scholar
Holmes, J.A. Ostracoda. Smol, J.P., Birks, H.J.B., and Last, W.M. Tracking Environmental Change Using Lake Sediments. Zoological Indicators 4, (2001). Kluwer Academic Publishers, Dordrecht. 125151.Google Scholar
Holmes, J.A., Zhang, J.W., Chen, F.H., and Qiang, M.R. Paleoclimatic implications of an 850-year oxygen-isotope record from the northern Tibetan Plateau. Geophysical Research Letters 34, (2007). L23403 http://dx.doi.org/10.1029/2007GL032228CrossRefGoogle Scholar
Hou, Y.T., Gou, Y.X., and Chen, D.Q. Fossil Ostracoda of China (Vol. 1). (2002). Science Press, Beijing. 1090 pp. (in Chinese) Google Scholar
Ito, E., and Forester, R.M. Changes in continental ostracode shell chemistry: uncertainty of cause. Hydrobiologia 620, (2009). 115.CrossRefGoogle Scholar
Janz, V.H. Zur Bedeutung des Schalenmerkmals ‘Marginalrippen’ der Gattung Ilyocypris (Ostracoda, Crustacea). Stuttgarter Beiträge zur Naturkunde, Serie B 206, (1994). 119.Google Scholar
Kutzbach, J.E., and Street-Perrott, F.A. Milankovitch forcing of fluctuations in the level of tropical lakes from 18 to 0 kyr BP. Nature 317, (1985). 130134.Google Scholar
Külköylüoğlu, O. On the usage of ostracods (Crustacea) as bioindicator species in different aquatic habitats in the Bolu region, Turkey. Ecological Indicators 4, (2004). 139147.Google Scholar
Lister, G.S., Kelts, K., Chen, K.Z., Yu, J.Q., and Niessen, F. Lake Qinghai, China: closed-basin lake levels and the oxygen isotope record for ostracoda since the latest Pleistocene. Palaeogeography, Palaeoclimatology, Palaeoecology 84, (1991). 141162.Google Scholar
Löffler, H. Recent and subfossil distribution of Cytherissa lacustris (Ostracoda) in lake Constance. Mitteilungen der Internationalen Vereinigung für theoretische und angewandte Limnologie 17, (1969). 240251.Google Scholar
McGregor, D.L. The reproductive potential, life history and parasitism of the freshwater ostracod Darwinula stevensoni (Brady and Robertson). Neale, J.W. The Taxonomy, Morphology and Ecology of Recent Ostracoda. Proceedings of the 2nd International Symposium on Ostracoda, Edinburgh. (1969). 194221.Google Scholar
Meisch, C. Freshwater Ostracoda of Western and Central Europe. (2000). Spektrum, Heidelberg. 522 pp.Google Scholar
Mezquita, F., Roca, J.R., Reed, J.M., and Wansard, G. Quantifying species–environment relationships in non-marine Ostracoda for ecological and palaeoecological studies: examples using Iberian data. Palaeogeography, Palaeoclimatology, Palaeoecology 225, (2005). 93117.Google Scholar
Mischke, S., and Wünnemann, B. The Holocene salinity history of Bosten Lake (Xinjiang, China) inferred from ostracod species assemblages and shell chemistry: possible palaeoclimatic implications. Quaternary International 154–155, (2006). 100112.Google Scholar
Mischke, S., Herzschuh, U., Massmann, G., and Zhang, C.J. An ostracod-conductivity transfer function for Tibetan lakes. Journal of Paleolimnology 38, (2007). 509524.Google Scholar
Mischke, S., Kramer, M., Zhang, C.J., Shang, H.M., Herzschuh, U., and Erzinger, J. Reduced early Holocene moisture availability in the Bayan Har Mountains, northeastern Tibetan Plateau, inferred from a multi-proxy lake record. Palaeogeography, Palaeoclimatology, Palaeoecology 267, (2008). 5976.Google Scholar
Nakamura, T., Niu, E., Oda, H., Ikeda, A., Minami, M., Takahashi, H., Adachi, M., Pals, L., Gottdang, A., and Suya, N. The HVEE Tandetron AMS system at Nagoya University. Nuclear Instruments and Methods in Physics Research B172, (2000). 5257.Google Scholar
Nüchterlein, H. Süßwasserostracoden aus Franken. Ein Beitrag zur Systematik und Ökologie der Ostracoden. Internationale Revue der gesamten Hydrobiologie 54, (1969). 223287.Google Scholar
Ranta, E. Population biology of Darwinula stevensoni (Crustacea, Ostracoda) in an oligotrophic lake. Annales Zoolo Fennici 16, (1979). 2835.Google Scholar
Reimer, P.J., Baillie, M.G.L., Bard, E., Bayliss, A., Beck, J.W., Bertrand, C.J.H., Blackwell, P.G., Buck, C.E., Burr, G.S., Cutler, K.B., Damon, P.E., Edwards, R.L., Fairbanks, R.G., Friedrich, M., Guilderson, T.P., Hogg, A.G., Hughen, K.A., Kromer, B., McCormac, G., Manning, S., Bronk Ramsey, C., Reimer, R.W., Remmele, S., Southon, J.R., Stuiver, M., Talamo, S., Taylor, F.W., van der Plicht, J., and Weyhenmeyer, C.E. Intcal04 terrestrial radiocarbon age calibration, 0–26 cal kyr BP. Radiocarbon 46, (2004). 10291058.Google Scholar
Ricketts, R.D., Johnson, T.C., Brown, E.T., Rasmussen, K.A., and Romanovsky, V.V. The Holocene paleolimnology of Lake Issyk-Kul, Kyrgyzstan: trace element and stable isotope composition of ostracodes. Palaeogeography, Palaeoclimatology, Palaeoecology 176, (2001). 207227.CrossRefGoogle Scholar
Rieradevall, M., and Roca, J.R. Distribution and population dynamics of ostracodes (Crustacea, Ostracoda) in a karstic lake: Lake Banyoles (Catalonia, Spain). Hydrobiologia 310, (1995). 189196.Google Scholar
Stott, L., Cannariato, K., Thunell, R., Haug, G.H., Koutavas, A., and Lund, S. Decline of surface temperature and salinity in the western tropical Pacific Ocean in the Holocene epoch. Nature 431, (2004). 5659.Google Scholar
Talbot, M.R. A review of the palaeohydrological interpretation of carbon and oxygen isotopic ratios in primary lacustrine carbonates. Chemical Geology 80, (1990). 261279.Google Scholar
Ter Braak, C.J.F., and Šmilauer, P. CANOCO 4.5: Biometrics. (2002). Wageningen University and Research Center, Wageningen. 500 pp.Google Scholar
Van der Meeren, T., Almendinger, J.E., Ito, E., and Martens, K. The ecology of ostracodes (Ostracoda, Crustacea) in western Mongolia. Hydrobiologia 641, (2010). 253273.Google Scholar
Van Doninck, K., Schön, I., Martens, K., and Goddeeris, B. The life-cycle of the asexual ostracod Darwinula stevensoni (Brady et Robertson, 1870) (Crustacea, Ostracoda) in a temporate pond. Hydrobiologia 500, (2003). 331340.CrossRefGoogle Scholar
Von Grafenstein, U., Erlenkeuser, H., and Trimborn, P. Oxygen and carbon isotopes in modern fresh-water ostracod valves: assessing vital offsets and autecological effects of interest for palaeoclimate studies. Palaeogeography, Palaeoclimatology, Palaeoecology 148, (1999). 133152.Google Scholar
Wang, S.M., and Dou, H.S. Annals of Lakes in China. (1998). Science Press, Beijing. 580 pp. (in Chinese) Google Scholar
Wang, S.M., and Ji, L. Paleolimnology of Hulun Lake. (1995). University of Science and Technology of China Press, Hefei. 125 pp. (in Chinese) Google Scholar
Wen, R.L., Xiao, J.L., Chang, Z.G., Zhai, D.Y., Xu, Q.H., Li, Y.C., and Itoh, S. Holocene precipitation and temperature variations in the East Asian monsoonal margin from pollen data from Hulun Lake in northeastern Inner Mongolia, China. Boreas 39, (2010). 262272.Google Scholar
Wen, R.L., Xiao, J.L., Chang, Z.G., Zhai, D.Y., Xu, Q.H., Li, Y.C., Itoh, S., and Lomtatidze, Z. Holocene climate changes in the mid-high latitude monsoon margin reflected by the pollen record from Hulun Lake, northeastern Inner Mongolia. Quaternary Research 73, (2010). 293303.Google Scholar
Wilkinson, I.P., Bubikyan, S.A., and Gulakyan, S.Z. The impact of late Holocene environmental change on lacustrine Ostracoda in Armenia. Palaeogeography, Palaeoclimatology, Palaeoecology 225, (2005). 187202.Google Scholar
Wrozyna, C., Frenzel, P., Steeb, P., Zhu, L.P., van Geldern, R., Mackensen, A., and Schwalb, A. Stable isotope and ostracode species assemblage evidence for lake level changes of Nam Co, southern Tibet, during the past 600 years. Quaternary International 212, (2010). 213.CrossRefGoogle Scholar
Xia, J., Haskell, B.J., Engstrom, D.R., and Ito, E. Holocene climate reconstructions from tandem trace-element and stable-isotope composition of ostracodes from Coldwater Lake, North Dakota, U.S.A. Journal of Paleolimnology 17, (1997). 85100.CrossRefGoogle Scholar
Xia, J., Ito, E., and Engstrom, D.R. Geochemistry of ostracode calcite: part 1, an experimental determination of oxygen isotope fractionation. Geochimica et Cosmochimica Acta 61, (1997). 377382.Google Scholar
Xiao, J.L., Chang, Z.G., Wen, R.L., Zhai, D.Y., Itoh, S., and Lomtatidze, Z. Holocene weak monsoon intervals indicated by low lake levels at Hulun Lake in the monsoonal margin region of northeastern Inner Mongolia, China. The Holocene 19, (2009). 899908.Google Scholar
Xu, Z.J., Jiang, F.Y., Zhao, H.W., Zhang, Z.B., and Sun, L. Annals of Hulun Lake. (1989). Jilin Literature and History Publishing House, Changchun. 691 pp. (in Chinese) Google Scholar
Zhai, D.Y., Xiao, J.L., Zhou, L., Wen, R.L., Chang, Z.G., and Pang, Q.Q. Similar distribution pattern of different phenotypes of Limnocythere inopinata (Baird) in a brackish-water lake in Inner Mongolia. Hydrobiologia 651, (2010). 185197.Google Scholar
Zhang, J.C., and Lin, Z.G. Climate of China. (1985). Shanghai Scientific and Technical Publishers, Shanghai. 603 pp. (in Chinese) Google Scholar
Zhang, P.X., Zhang, B.Z., and Yang, W.B. On the model of post-glacial palaeoclimatic fluctuation in Qinghai Lake region. Quaternary Sciences 1, (1989). 6677. (in Chinese) Google Scholar