Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-13T21:20:43.508Z Has data issue: false hasContentIssue false

A high-resolution sedimentary charcoal- and geochemistry-based reconstruction of late Holocene fire regimes in the páramo of Chirripό National Park, Costa Rica

Published online by Cambridge University Press:  12 November 2019

Jiaying Wu*
Affiliation:
Department of Geography, The University of Georgia, Athens, GA 30605, USA
David F. Porinchu
Affiliation:
Department of Geography, The University of Georgia, Athens, GA 30605, USA
*
*Present address of corresponding author: Southeast Environmental Research Center, Stable Isotope laboratory, Florida International University, Biscayne Bay Campus, Miami, FL 33181 Email: [email protected]

Abstract

Multiproxy analysis of two sediment cores recovered from lagos Morrenas 3C and Ditkebi, located in the páramo of Costa Rica's Chirripó National Park, was undertaken to develop multidecadal-scale reconstructions of late Holocene fire regimes for the region. Analysis of macroscopic charcoal and sediment geochemistry (C%, N%, δ13C, δ15N, and C/N ratios) documents periodic burning of the páramo in Chirripó National Park during the past ~1700 yr. The charcoal records provide evidence of high fire frequency between AD ~560 and 720 and between AD ~980 and 1230. Severe fire episodes are reflected by a rapid increase in the flux of carbon (C) and nitrogen (N) from the surrounding catchment because of the volatilization of páramo vegetation. Additionally, δ15N, which sharply increases following local fire events, captures postfire changes in nutrient loading and, likely, the decadal-scale rate of postfire recovery of páramo vegetation. The consistently high δ13C and C/N values observed between AD ~700 and 1100 suggest an expansion of Muhlenbergia, a native C4 grass growing near shore, suggesting that the interval between AD ~700 and 1100, broadly corresponding to the Terminal Classic Drought and Medieval Climate Anomaly, was characterized by a decrease in effective moisture and temperature.

Type
Research Article
Copyright
Copyright © University of Washington. Published by Cambridge University Press, 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Blaauw, M. and Christen, J.A., 2011. Flexible paleoclimate age-depth models using an autoregressive gamma process. Bayesian analysis, 6(3), pp. 457474.Google Scholar
Cerling, T.E., Harris, J.M., MacFadden, B.J., Leakey, M.G., Quade, J., Eisemann, V., Ehleringer, J.R., 1997. Global vegetation change through the Miocene–Pliocene boundary. Nature 389, 153158.Google Scholar
Chaverri-Polini, A., Esquivel-Garrote, O., 2005. Conservaciόn, visitaciόn y manejo del Parque Nacional Chirripό, Costa Rica. In: Kappelle, M., Horn, S.P. (Eds.), Páramos de Costa Rica. INBio Press, Santo Domingo de Heredia, Costa Rica, pp. 669700.Google Scholar
Chaverri-Polini, A., Vaughan-Dickhaut, C., Poveda-Alvarez, L.J., 1976. Report of the tour made to the Chirripó massif following the fire that occurred in March 1976. Magazine of Costa Rica 11, 243279.Google Scholar
Dubreuil, M.A., Moore, T.R., 1982. A laboratory study of postfire nutrient redistribution in subarctic spruce–lichen woodlands. Canadian Journal of Botany 60, 25112517.Google Scholar
Esquivel-Hernández, G., Sánchez-Murillo, R., Quesada-Román, A., Mosquera, G.M., Birkel, C., Boll, J., 2018. Insight into the stable isotopic composition of glacial lakes in a tropical alpine ecosystem: Chirripό, Costa Rica. Hydrological Processes 32, 35883603.Google Scholar
Feger, K.H., Hawtree, D., 2013. Soil carbon and water security. In: Lal, R., Lorenz, K., Hüttl, R.F., Schneider, B.U., von Braun, J. (Eds.), Ecosystem Services and Carbon Sequestration in the Biosphere. Springer, Dordrecht, the Netherlands, pp. 7999.Google Scholar
Gillon, D., Gomendy, V., Houssard, C., Marechal, J., Valette, J.C., 1995. Combustion and nutrient losses during laboratory burns. International Journal of Wildland Fire 5, 112.Google Scholar
Haberyan, K.A., Horn, S.P., Umaña, V., 2003. Basic limnology of fifty-one lakes in Costa Rica. Revista de Biología Tropical 51, 107122.Google Scholar
Higuera, P.E., Brubaker, L.B., Anderson, P.M., Hu, F.S., Brown, T.A., 2009. Vegetation mediated the impacts of postglacial climatic change on fire regimes in the south-central Brooks Range, Alaska. Ecological Monographs 79, 201219.Google Scholar
Hodell, D.A., Brenner, M., Curtis, J.H., 2000. Climate change in the northern American tropics and subtropics since the last ice age. In: Lentz, D.L. (Ed.), Imperfect Balance: Landscape Transformations in the Precolumbian Americas. Columbia University Press, New York, pp. 1338.Google Scholar
Hodell, D.A., Brenner, M., Curtis, J.H., 2005. Terminal Classic drought in the northern Maya lowlands inferred from multiple sediment cores in Lake Chichancanab (Mexico). Quaternary Science Reviews 24, 14131427.Google Scholar
Horn, S.P., 1989. Prehistoric fires in the Chirripó highlands of Costa Rica: Sedimentary charcoal evidence. Revista de Biología Tropical 37, 139148.Google Scholar
Horn, S.P., 1990. Vegetation recovery after the 1976 páramo fire in Chirripó National Park, Costa Rica. Revista de Biología Tropical 38, 267275.Google Scholar
Horn, S.P., 1993. Postglacial vegetation and fire history in Chirripó páramo of Costa Rica. Quaternary Research 40, 107116.Google Scholar
Horn, S.P., 2006. Pre-Columbian maize agriculture in Costa Rica: pollen and other evidence from lake and swamp sediments. In: Staller, J., Tykot, R., Benz, B. (Eds.), Histories of Maize: Multidisciplinary Approaches to the Prehistory, Biogeography, Domestication, and Evolution of Maize. Elsevier, San Diego, CA, pp 104117.Google Scholar
Horn, S.P., Haberyan, K.A., 2016. Lakes of Costa Rica. In: Kappelle, M. (Ed.), Costa Rican Ecosystems. University of Chicago Press, Chicago, pp. 656682.Google Scholar
Horn, S.P., Kappelle, M., 2009. Fire in the páramo ecosystems of Central and South America. In: Tropical Fire Ecology. Springer, Berlin, pp. 505–539.Google Scholar
Horn, S.P., Orvis, K.H., Haberyan, K.A., 2005. Limnología de las lagunas glaciales en el páramo del Chirripó, Costa Rica. In: Kappelle, M., Horn, S.P. (Eds.), Páramos de Costa Rica. INBio Press, Santo Domingo de Heredia, Costa Rica, pp. 161181.Google Scholar
Jensen, K., Lynch, E.A., Calcote, R., Hotchkiss, S.C., 2007. Interpretation of charcoal morphotypes in sediments from Ferry Lake, Wisconsin, USA: do different plant fuel sources produce distinctive charcoal morphotypes? Holocene 17, 907915.Google Scholar
Kappelle, M., 1990. Altitudinal zoning of the Chirripó National Park, Talamanca Mountain Range, Costa Rica. In: Abstracts, V Latin American Congress of Botany, Havana, Cuba.Google Scholar
Kappelle, M., Horn, S.P., 2016. The Páramo ecosystem of Costa Rica's highlands. In: Kappelle, M. (Ed.), Costa Rican Ecosystems. University of Chicago Press, Chicago, pp. 492523.Google Scholar
Keane, R.E., Finney, M.A., 2003. The simulation of landscape fire, climate, and ecosystem dynamics. In: Veblen, T.T., Baker, W.L., Montenegro, G., Swetnam, T.W. (Eds.), Fire and Climatic Change in Temperate Ecosystems of the Western Americas. Springer, New York, pp. 3268.Google Scholar
Kennedy, L.M., Horn, S.P., Orvis, K.H., 2006. A 4000-year record of fire and forest history from Valle de Bao, Cordillera Central, Dominican Republic. Palaeogeography, Palaeoclimatology, Palaeoecology 231, 279290.Google Scholar
Kerr, M.T., Horn, S.P., Grissino-Mayer, H.D., Stachowiak, L.A., 2018. Annual growth zones in stems of Hypericum irazuense (Guttiferae) in the Costa Rican páramos. Physical Geography 39, 3850.Google Scholar
Knicker, H., 2007. How does fire affect the nature and stability of soil organic nitrogen and carbon? A review. Biogeochemistry 85, 91118.Google Scholar
Lane, C.S., Horn, S.P., Mora, C.I., Orvis, K.H., Finkelstein, D.B., 2011. Sedimentary stable carbon isotope evidence of late Quaternary vegetation and climate change in highland Costa Rica. Journal of Paleolimnology 45, 323338.Google Scholar
League, B.L., Horn, S.P., 2000. A 10,000 year record of Páramo fires in Costa Rica. Journal of Tropical Ecology 16, 747752.Google Scholar
Luteyn, J., 1999. Introduction to the páramo ecosystem. In: Luteyn, J.L. (Ed.), Páramos: A Checklist of Plant Diversity, Geographical Distribution, and Botanical Literature. New York Botanical Garden Press, New York, pp. 139.Google Scholar
Madriñán, S., Cortés, A.J., Richardson, J.E., 2013. Páramo is the world's fastest evolving and coolest biodiversity hotspot. Frontiers in Genetics 4, 192.Google Scholar
Mann, M.E., Zhang, Z., Rutherford, S., Bradley, R.S., Hughes, M.K., Shindell, D., Ammann, C., Faluvegi, G., Ni, F., 2009. Global signatures and dynamical origins of the Little Ice Age and Medieval Climate Anomaly. Science 326, 12561260.Google Scholar
Meyers, P.A., 2003. Applications of organic geochemistry to paleolimnological reconstructions: a summary of examples from the Laurentian Great Lakes. Organic Geochemistry 34, 261289.Google Scholar
Meyers, P.A., Lallier-Vergès, E., 1999. Lacustrine sedimentary organic matter records of Late Quaternary paleoclimates. Journal of Paleolimnology 21, 345372.Google Scholar
Meyers, P.A., Teranes, J.L., 2002. Sediment organic matter. In: Last, W.M., Smol, J.P. (Eds.), Tracking Environmental Change using Lake Sediments. Springer, Dordrecht, the Netherlands, pp. 239269.Google Scholar
Morris, J.L., McLauchlan, K.K., Higuera, P.E., 2015. Sensitivity and complacency of sedimentary biogeochemical records to climate-mediated forest disturbances. Earth-Science Reviews 148, 121133.Google Scholar
Morris, J.L., Mueller, J.R., Nurse, A., Long, C.J., McLauchlan, K.K., 2014. Holocene fire regimes, vegetation and biogeochemistry of an ecotone site in the Great Lakes Region of North America. Journal of Vegetation Science 25, 14501464.Google Scholar
Orvis, K.H., Horn, S.P., 2000. Quaternary glaciers and climate on Cerro Chirripó, Costa Rica. Quaternary Research 54, 2437.Google Scholar
Pohl, R.W. 1980. Flora costaricensis: family number 15, Gramineae. Fieldiana, Botany new series 4, 1608.Google Scholar
Raison, R.J., 1979. Modification of the soil environment by vegetation fires, with particular reference to nitrogen transformations: a review. Plant and Soil 51, 73108.Google Scholar
Reimer, P.J., Bard, E., Bayliss, A., Beck, J.W., Blackwell, P.G., Ramsey, C.B., Buck, C.E., Cheng, H., Edwards, R.L., Friedrich, M. and Grootes, P.M., 2013. IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon, 55(4), pp. 18691887.Google Scholar
Sage, R.F., Li, M., Monson, R.K., 1999a. The taxonomic distribution of C4 photosynthesis. In: Sage, R.F., Monson, R.K. (Eds.) C4 Plant Biology. Academic Press, San Diego, CA, pp. 551584.Google Scholar
Sage, R.F., Wedin, D.A., Li, M., 1999b. The biogeography of C4 photosynthesis: patterns and controlling factors. In: Sage, R.F., Monson, R.K. (Eds.) C4 Plant Biology. Academic Press, San Diego, CA, pp. 313374.Google Scholar
Schwarz, A.G., Redmann, R.E., 1988. C4 grasses from the boreal forest region of northwestern Canada. Canadian Journal of Botany 66, 24242430.Google Scholar
Sol, F., 2013. Religious Organization and Political Structure in Prehispanic Southern Costa Rica. PhD dissertation, Department of Anthropology, University of Pittsburgh, Pittsburgh, PA.Google Scholar
Teranes, J.L., Bernasconi, S.M., 2005. Factors controlling δ13C values of sedimentary carbon in hypertrophic Baldeggersee, Switzerland, and implications for interpreting isotope excursions in lake sedimentary records. Limnology and Oceanography 50, 914922.Google Scholar
Turekian, V.C., Macko, S., Ballentine, D., Swap, R.J., Garstang, M., 1998. Causes of bulk carbon and nitrogen isotopic fractionations in the products of vegetation burns: laboratory studies. Chemical Geology 152, 181192.Google Scholar
Uhelski, D., Miesel, J.R., 2017. Physical location in the tree during forest fire influences element concentrations of bark-derived pyrogenic carbon from charred jack pines (Pinus banksiana Lamb.). Organic Geochemistry 110, 8791.Google Scholar
Vargas, G., Sánchez, J.J., 2005. Plantas con flores de los páramos de Costa Rica y Panamá: el páramo ístmico. In: Kappelle, M., Horn, S.P. (Eds.), Páramos de Costa Rica. INBio Press, Santo Domingo de Heredia, Costa Rica, pp. 397435.Google Scholar
Walsh, M.K., Prufer, K.M., Culleton, B.J., Kennett, D.J., 2014. A late Holocene paleoenvironmental reconstruction from Agua Caliente, southern Belize, linked to regional climate variability and cultural change at the Maya polity of Uxbenká. Quaternary Research 82, 3850.Google Scholar
Walsh, M.K., Whitlock, C., Bartlein, P.J., 2008. A 14,300-year-long record of fire–vegetation–climate linkages at Battle Ground Lake, southwestern Washington. Quaternary Research 70, 251264.Google Scholar
Walsh, M.K., Whitlock, C., Bartlein, P.J., 2010. 1200 Years of fire and vegetation history in the Willamette Valley, Oregon and Washington, reconstructed using high-resolution macroscopic charcoal and pollen analysis. Palaeogeography, Palaeoclimatology, Palaeoecology 297, 273289Google Scholar
Whitlock, C., Larsen, C., 2002. Charcoal as a fire proxy. In: Last, W.M., Smol, J.P. (Eds.), Tracking Environmental Change using Lake Sediments. Springer, Dordrecht, the Netherlands, pp. 7597.Google Scholar
Wu, J., Porinchu, D.F., Campbell, N.L., Mordecai, T.M., Alden, E.C., 2019a. Holocene hydroclimate and environmental change inferred from a high-resolution multi-proxy record from Lago Ditkebi, Chirripó National Park, Costa Rica. Palaeogeography, Palaeoclimatology, Palaeoecology 518, 172186.Google Scholar
Wu, J., Porinchu, D.F., Horn, P.S., 2019b. Late Holocene hydroclimate variability in Costa Rica: signature of the Terminal Classic Drought and the Medieval Climate Anomaly in the northern tropical Americas. Quaternary Science Reviews 215, 144159.Google Scholar
Wunsch, O., Calvo, G., Willscher, B., Seyfried, H., 1999. Geologie der Alpinen Zone des Chirripó-Massives (Cordillera de Talamanca, Costa Rica, Mittelamerika). Profil 16, 193210.Google Scholar