Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-27T11:04:14.841Z Has data issue: false hasContentIssue false

A High-Resolution Sea-Surface Temperature Record from the Tropical South China Sea (16,500–3000 yr B.P.)

Published online by Cambridge University Press:  20 January 2017

Stephan Steinke
Affiliation:
Institut für Geowissenschaften, Universität Kiel, Olshausenstr. 40-60 Kiel, 24118, Germany, E-mail: [email protected]
Markus Kienast
Affiliation:
Department of Earth and Ocean Sciences, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
Uwe Pflaumann
Affiliation:
Institut für Geowissenschaften, Universität Kiel, Olshausenstr. 40-60, Kiel, 24118, Germany
Mara Weinelt
Affiliation:
Institut für Geowissenschaften, Universität Kiel, Olshausenstr. 40-60, Kiel, 24118, Germany
Karl Stattegger
Affiliation:
Institut für Geowissenschaften, Universität Kiel, Olshausenstr. 40-60, Kiel, 24118, Germany

Abstract

The timing and magnitude of sea-surface temperature (SST) changes in the tropical southern South China Sea (SCS) during the last 16,500 years have been reconstructed on a high-resolution, 14C-dated sediment core using three different foraminiferal transfer functions (SIMMAX28, RAM, FP-12E) and geochemical (Uk′ 37) SST estimates. In agreement with CLIMAP reconstructions, both the FP-12E and the Uk′ 37 SST estimates show an average late glacial–interglacial SST difference of 2.0°C, whereas the RAM and SIMMAX28 foraminiferal transfer functions show only a minor (0.6°C) or no consistent late glacial–interglacial SST change, respectively. Both the Uk′ 37 and the FP-12E SST estimates, as well as the planktonic foraminiferal δ18O values, indicate an abrupt warming (ca. 1°C in <200 yr) at the end of the last glaciation, synchronous (within dating uncertainties) with the Bølling transition as recorded in the Greenland Ice Sheet Project 2 (GISP2) ice core, whereas the RAM-derived deglacial SST increase appears to lag during this event by ca. 500 yr. The similarity in abruptness and timing of the warming associated with the Bølling transition in Greenland and the southern SCS suggest a true synchrony of the Northern Hemisphere warming at the end of the last glaciation. In contrast to the foraminiferal transfer function estimates that do not indicate any consistent cooling associated with the Younger Dryas (YD) climate event in the tropical SCS, the Uk′ 37 SST estimates show a cooling of ca. 0.2–0.6°C compared to the Bølling–Allerød period. These Uk′ 37 SST estimates from the southern SCS argue in favor of a Northern Hemisphere-wide, synchronous cooling during the YD period.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alley, R.B., Meese, D.A., Shuman, C.A., Gow, A.J., Taylor, K.C., Grootes, P.M., White, J.W.C., Ram, M., Waddington, E.D., Mayewski, P.A., Zielinski, G.A., (1993). Abrupt increase in Greenland snow accumulation at the end of the Younger Dryas event.. Nature, 362, 527529.Google Scholar
An, Z., Porter, S.C., Zhou, W., Lu, Y., Donahue, D.J., Head, M.J., Wu, X., Ren, J., Zheng, H., (1993). Episode of strengthened summer monsoon climate of Younger Dryas age on the loess plateau of central China.. Quaternary Research, 39, 4554.Google Scholar
Anderson, D.M., Thunell, R.C., (1993). The oxygen-isotope composition of tropical ocean surface water during the last deglaciation.. Quaternary Science Reviews, 12, 465473.Google Scholar
Bard, E., (1988). Correction of accelerator mass spectrometry 14C ages measured in planktonic foraminifera: Paleoceanographic implications.. Paleoceanography, 3, 635645.Google Scholar
Bard, E., Rosteck, F., Sonzogni, C., (1997). Interhemispheric synchrony of the last deglaciation inferred from alkenone palaeothermometry.. Nature, 385, 707710.Google Scholar
, A.W.H., (1977). An ecological, zoogeographic and taxonomic review of recent planktonic foraminifera.. Ramsay, A.T.S., Oceanic Micropaleontology, Academic Press, San Diego.1100.Google Scholar
Bond, G., Broecker, W., Johnson, S., McManus, J., Labeyrie, L., Jouzel, J., Bonani, G., (1993). Correlation between climate records from North Atlantic sediments and Greenland ice.. Nature, 143, 143147.CrossRefGoogle Scholar
Broecker, W.S., Andree, M., Klas, M., Bonani, G., Wolfli, W., Oeschger, H., (1988). New evidence from the South China Sea for an abrupt termination of the last glacial period.. Nature, 333, 156158.Google Scholar
Cayre, O., Bard, E., (1999). Planktonic foraminiferal and alkenone records of the last deglaciation from the Eastern Arabia Sea.. Quaternary Research, 52, 337342.CrossRefGoogle Scholar
Chen, M.T., (1994). Late Quaternary Paleoceanography of the Equatorial Indo-Pacific Ocean: A Quantitative Analysis Based on Marine Micropaleontological Data.. Brown University, .Google Scholar
CLIMAP Project Members, , (1981). Seasonal reconstructions of the earth's surface at the Last Glacial Maximum.. Geological Society of America Map and Chart Series MC-36, 18.Google Scholar
Crowley, T.J., (2000). CLIMAP SSTs re-revisited.. Climate Dynamics, 16, 241255.Google Scholar
Crowley, T.J., Baum, S.K., (1997). Effect of vegetation on an ice-age climate model simulation.. Journal of Geophysical Research, 102, 16,46316,480.Google Scholar
Dansgaard, W., White, J.W.C., Johnsen, S.J., (1989). The abrupt termination of the Younger Dryas climate event.. Nature, 339, 532534.Google Scholar
Dansgaard, W., Johnson, S.J., Clausen, H.B., Dahl-Jensen, D., Gundestrup, N.S., Hammer, C.U., Hvidberg, C.S., Steffensen, J.P., Sveinbjörnsdottir, A.E., Jouzel, J., Bond, G., (1993). Evidence for general instability of past climate from a 250-kyr ice-core record.. Nature, 364, 218220.Google Scholar
Duplessy, J.C., Delibrias, G., Turon, J.L., Pujol, C., Duprat, J., (1981). Deglacial warming of the northeastern Atlantic Ocean: Correlation with the paleoclimatic evolution of the European continent.. Palaeogeography, Palaeoclimatology, Palaeoecology, 35, 121144.CrossRefGoogle Scholar
Duplessy, J.C., Bard, E., Arnold, M., Shackleton, N., Duprat, J., Labeyrie, L., (1991). How fast did the ocean-atmosphere system run during the last deglaciation?.. Earth and Planetary Science Letters, 103, 2740.Google Scholar
Engstrom, D.R., Hansen, B.C.S., Wright, H.E., (1990). A possible Younger Dryas record in southeastern Alaska.. Science, 250, 13831385.Google Scholar
Geyh, M.A., Kudrass, H.-R., Streif, H., (1979). Sea-level changes during the late Pleistocene and Holocene in the Strait of Malacca.. Nature, 278, 441443.Google Scholar
Grootes, P.M., Stuiver, M., White, J.W.C., Johnson, S., Jouzel, J., (1993). Comparison of oxygen isotope records from the GISP2 and GRIP Greenland ice cores.. Nature, 366, 552554.Google Scholar
Hanebuth, T., (2000). Sea-Level Changes on the Sunda Shelf during the Last 50,000 Years.. University of Kiel, .Google Scholar
Hanebuth, T., Stattegger, K., Grootes, P.M., (2000). Rapid flooding of the Sunda Shelf: A late-glacial sea-level record.. Science, 288, 10331035.Google Scholar
Hesp, P.A., Hung, C.C., Hilton, M., Ming, C.L., Turner, I.M., (1998). A first tentative Holocene sea-level curve for Singapore.. Journal of Coastal Research, 14, 308314.Google Scholar
Jian, Z., Li, B., Pflaumann, U., Wang, P., (1996). Late Holocene cooling event in the western Pacific.. Science in China D, 39, 543550.Google Scholar
Jian, Z., Chen, M., Lin, H., Wang, P., (1998). Stepwise paleoceanographic changes during the last deglaciation in the southern South China Sea: Record of stable isotope and microfossils.. Science in China D, 41, 187194.Google Scholar
Kennett, J.P., Srinivasan, M.S., (1993). Neogene Planktonic foraminifera, A Phylogenetic Atlas.. Hutchinson Ross Publishing Company, Stroudsburg.Google Scholar
Kienast, S.S., McKay, J.L., (2001). Sea surface temperatures in the subarctic northeast Pacific reflect millennial-scale climate oscillations during the last 16 kyrs.. Geophysical Research Letters, 28, 15631566.Google Scholar
Kudrass, H.R., Erlenkeuser, H., Volbrecht, R., Weiss, W., (1991). Global nature of the Younger Dryas cooling event inferred from oxygen isotope data from Sulu Sea core.. Nature, 349, 406409.Google Scholar
Lea, D.W., Pak, D.K., Spero, H.J., (2000). Climate impact of late Quaternary equatorial Pacific sea surface temperature variations.. Science, 289, 17191724.CrossRefGoogle ScholarPubMed
Levitus, S., Boyer, T., (1994). World Ocean Atlas Volume 4: Temperature..Google Scholar
Li, B., Jian, Z., Wang, P., (1997). Pulleniatina obliquiloculata as paleoceanographic indicator in the southern Okinawa Trough since the last 20,000 years.. Marine Micropaleontology, 32, 5969.Google Scholar
Linsley, B.K., Thunell, R.C., (1990). The record of deglaciation in the Sulu Sea: Evidence for the Younger Dryas event in the tropical western Pacific.. Paleoceanography, 5, 10251039.Google Scholar
Mangerud, J., Andersen, S.T., Beglund, B.E., Donner, J.J., (1974). Quaternary stratigraphy of Norden, a proposal for terminology and classification.. Boreas, 3, 109128.Google Scholar
Maloney, B.K., (1996). Evidence for the Younger Dryas climatic event in Southeast Asia.. Quaternary Science Reviews, 14, 949958.Google Scholar
Meese, D. A, Alley, R. B, Gow, A. J, Grootes, P. M, Mayewski, P. A, Ram, M, Taylor, K. C, Waddington, I. E, and Zielinski, G. A., (1994)., Preliminary Depth–Age Scale of the GISP2 Ice Core.. CRREL Special Report, 94-1, , U.S. Army Cold Regions Research and Engineering Laboratory, Hanover, NH., 66, pp.Google Scholar
Meese, D.A., Gow, A.J., Alley, R.B., Zielinski, G.A., Grootes, P.M., Ram, M., Taylor, K.C., Mayewski, P.A., Bolzan, J.F., (1997). The Greenland Ice Sheet Project 2 depth–age scale: Methods and results.. Journal of Geophysical Research, 102, 26,41126,423.Google Scholar
Miao, Q., Thunell, R.C., Anderson, D.M., (1994). Glacial-Holocene carbonate dissolution and sea surface temperatures in the South China and Sulu seas.. Paleoceanography, 9, 269290.Google Scholar
Mix, A.C., Morey, A.E., Pisias, N.G., Hostetler, S.W., (1999). Foraminiferal faunal estimates of paleotemperature: Circumventing the no-analog problem yields cool ice age tropics.. Paleoceanography, 14, 350359.CrossRefGoogle Scholar
Mix, A.C., Lund, D.C., Pisias, N.G., Boden, P., Bornmalm, L., Lyle, M., Pike, J., (1999). Rapid climate oscillations in the northeast Pacific during the last deglaciation reflect Northern and Southern Hemisphere sources.. Clark, P.U., Webb, R.S., Keigwin, L.D., Mechanisms of Global Climate Change at Millenial Time Scales, American Geophysical Union, Washington.127148.Google Scholar
Molengraaff, G.A.F., (1921). Modern deep-sea research in the East Indian Archipelago.. The Geographical Journal, 57, 95121.Google Scholar
Nadeau, M.-J., Schleicher, M., Grootes, P.M., Erlenkeuser, H., Gottdang, A., Mous, D.J.W., Sarnthein, M., Willkomm, H., (1997). The Leibniz-Labor AMS facility at the Christian-Albrechts-University, Kiel, Germany.. Nuclear Instruments and Methods in Physics Research B, 123, 2230.Google Scholar
Paillard, D., Labeyrie, L., Yiou, P., (1996). Macintosh program performs time-series analysis.. Eos, Transactions of the American Geophysical Union, 77, 379.Google Scholar
Parker, F.L., (1962). Planktonic foraminifera species in Pacific sediments.. Micropaleontology, 8, 219254.Google Scholar
Pelejero, C., Grimalt, J.O., (1997). The correlation between the Uk37 index and sea surface temperatures in the warm boundary: The South China Sea.. Geochimica et Cosmochimica Acta, 61, 47894797.Google Scholar
Pelejero, C., Grimalt, J.O., Heilig, S., Kienast, M., Wang, L., (1999). High-resolution Uk 37 temperature reconstructions in the South China Sea over the past 220 kyr.. Paleoceanography, 14, 224231.Google Scholar
Pflaumann, U., Jian, Z., (1999). Modern distribution patterns of planktonic foraminifera in the South China Sea and western Pacific: A new transfer technique to estimate regional sea-surface temperatures.. Marine Geology, 156, 4183.CrossRefGoogle Scholar
Pflaumann, U., Duprat, J., Pujol, C., Labeyrie, L.D., (1996). SIMMAX: A modern analog technique to deduce Atlantic sea surface temperatures from planktonic forminifera in deep-sea sediments.. Paleoceanography, 11, 1535.CrossRefGoogle Scholar
Prell, W. L., (1985)., The Stability of Low-Latitude Sea-Surface Temperatures: An Evaluation of the CLIMAP Reconstruction with Emphasis on the Positive SST Anomalies.. Technical Report, U.S. Dept. of Energy, 60, pp, Brown University, Dept. of Applied Sciences.Google Scholar
Prell, W.L., Curry, W.B., (1981). Faunal and isotope indices of monsoonal upwelling: Western Arabia Sea.. Oceanologica Acta, 4, 9198.Google Scholar
Rosenthal, Y., Oppo, D.W., Dannenmann, S., Linsley, B.K., (2000). Millennial-scale variations in western equatorial Pacific sea surface temperature during glacial and Holocene climates.. Eos, Transactions of the American Geophysical Union, 81, 657.Google Scholar
Rühlemann, C., Mulitza, S., Müller, P.J., Wefer, G., Zahn, R., (1999). Warming of the tropical Atlantic Ocean and slowdown of thermohaline circulation during the last deglaciation.. Nature, 402, 511514.Google Scholar
Sachs, J.P., Schneider, R.R., Eglinton, T.I., Freeman, K.H., Ganssen, G., McManus, J.F., Oppo, D.W., (2000). Alkenones as paleoceanographic proxies.. Geochemistry Geophysics Geosystems, 1, .Google Scholar
Schleicher, M., Grootes, P.M., Nadeau, M.-J., Schoon, A., (1998). The carbonate 14C background and its component at the Leibniz AMS facility.. Radiocarbon, 40, 8594.Google Scholar
Schrag, D.P., Hampt, G., Murray, D.W., (1996). Pore fluid constraints on the temperature and oxygen isotopic composition of the glacial ocean.. Science, 272, 19301932.Google Scholar
Shackleton, N.J., (2000). The 100,000-year ice-age cycle identified and found to lag temperature, carbon dioxide, and orbital eccentricity.. Science, 289, 18971902.Google Scholar
Sonzogni, C., Bard, E., Rostek, F., (1998). Tropical sea-surface temperatures during the last glacial period: A view based on alkenones in Indian Ocean sediments.. Quaternary Science Reviews, 17, 11851201.CrossRefGoogle Scholar
Stattegger, K, Kuhnt, W, Wong, H. K, et al., (1997)., Cruise Report SONNE 115 SUNDAFLUT. Sequence Stratigraphy, Late Pleistocene-Holocene Sea Level Fluctuations and High Resolution Record of the Post-Pleistocene Transgression on the Sunda Shelf.. Berichte-Reports. Geol.-Paläont. Inst. Univ, . Kiel . 86, , 211, pp.Google Scholar
Stuiver, M., Grootes, P.M., (2000). GISP2 oxygen isotope ratios.. Quaternary Research, 53, 277280.Google Scholar
Stuiver, M., Reimer, P.J., (1993). Extended 14C database and revised CALIB radiocarbon calibration program.. Radiocarbon, 35, 215230.Google Scholar
Stuiver, M., Grootes, P.M., Braziunas, T.F., (1995). The GISP2 δ18O Climate Record of the Past 16,500 Years and the Role of the Sun, Ocean, and Volcanoes.. Quaternary Research, 44, 341354.CrossRefGoogle Scholar
Stuiver, M., Reimer, P.J., Bard, E., Beck, J.W., Burr, G.S., Hughen, K.A., Kromer, B., McCormac, G., Van der Pflicht, J., Spurk, M., (1998). INTCAL98 radiocarbon age calibration, 24,000-0 cal BP.. Radiocarbon, 40, 10411083.CrossRefGoogle Scholar
Stute, M., Forster, M., Frischkorn, H., Serejo, A., Clark, J.F., Schlosser, P., Broecker, W.S., Bonani, G., (1995). Cooling of tropical Brazil (5°C) during the Last Glacial Maximum.. Science, 269, 379383.Google Scholar
Stute, M., Le Van, Khoi, Schlosser, P., Tobin, M., Higgins, S., (1997). Glacial paleotemperature records for the tropics derived from noble gases dissolved in groundwater.. Eos, Transactions of the American Geophysical Union, 78, 44.Google Scholar
Thompson, P.R., (1981). Planktonic foraminifera in the western North Pacific during the past 150,000 years: Comparison of modern and fossil assemblages.. Palaeogeography, Palaeoclimatology, Palaeoecology, 35, 241279.CrossRefGoogle Scholar
Thunell, R.C., Miao, Q., (1996). Sea surface temperature of the western equatorial Pacific Ocean during the Younger Dryas.. Quaternary Research, 46, 7277.Google Scholar
Villanueva, J., Pelejero, C., Grimalt, J.O., (1997). Clean-up procedures for the unbiassed estimation of C37-C39 alkenones sea surface temperatures and terrigenous n-alkane inputs in paleoceanography.. Journal of Chromatography A, 757, 145151.Google Scholar
von Grafenstein, U., Erlenkeuser, H., Brauer, A., Jouzel, J., Johnson, S.J., (1999). A Mid-European decadal isotope-climate record from 15,500 to 5000 years B.P.. Science, 284, 16541657.Google Scholar
Waelbroeck, C., Labeyrie, L., Duplessy, J.-C., Guiot, J., Labracherie, M., Leclaire, H., Duprat, J., (1998). Improving past sea surface temperature estimates based on planktonic fossil faunas.. Paleoceanography, 13, 272283.Google Scholar
Wang, L., Sarnthein, M., Erlenkeuser, H., Grimalt, J., Grootes, P., Heilig, S., Ivanova, E., Kienast, M., Pelejero, C., Pflaumann, U., (1999). East Asian monsoon climate during the late Pleistocene: High-resolution sediment records from the South China Sea.. Marine Geology, 156, 245284.Google Scholar
Weyhenmeyer, C.E., Burns, S.J., Waber, H.N., Aeschbach-Hertig, W., Kipfer, R., Loosli, H.H., Matter, A., (2000). Cool glacial temperatures and changes in moisture source recorded in Oman groundwaters.. Science, 287, 842845.Google Scholar
Yan, G., Wang, F.B., Shi, G.R., Li, S.F., (1999). Palynological and stable isotopic study of palaeoenvironmental changes on the northeastern Tibetan plateau in the last 30,000 years.. Palaeogeography, Palaeoclimatology, Palaeoecology, 153, 147159.Google Scholar
Zhou, W., Donahue, D.J., Porter, S.C., Jull, T.A., Li, X., Stuiver, M., An, Z., Matsumoto, E., Dong, G., (1996). Variability of monsoon climate in East Asia at the end of the last glaciation.. Quaternary Research, 46, 219229.Google Scholar
Zhou, W., Head, M.J., Lu, X., An, Z., Jull, A.J.T., Donahue, D., (1999). Teleconnection of climatic events between East Asia and polar, high latitude areas during last deglaciation.. Palaeogeography, Palaeoclimatology, Palaeoecology, 152, 163172.Google Scholar