Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-07T17:08:00.988Z Has data issue: false hasContentIssue false

High-Resolution Paleotemperature Proxy Record for the Last Interglaciation Based on Norwegian Speleothems

Published online by Cambridge University Press:  20 January 2017

Stein-Erik Lauritzen*
Affiliation:
Department of Geology, Bergen University Allégaten 41, N-5007 Bergen, Norway

Abstract

Two speleothems from a coastal lowland and an alpine cave site in northern Norway grew in isotopic equilibrium during Termination II and marine isotope stage 5 (150,000-80,000 yr B.P.), as dated by the U-series technique. The stable isotope record (δ18O, δ13C) displays a time resolution down to ∼20 yr. The δ18Oc signal in the two speleothems appears to be mainly dominated by the meteoric signal; i.e., there is a positive relationship between δ18Oc and temperature [∂(δ18Oc/∂T > 0]. The FM-2 couplet, a Younger Dryas type two-step structure in Termination II at 132,000 ± 5000 and 129,000 ± 5000 yr is prominent in the speleothem record. The record correlates well with details and gross features of the GRIP ice core and confirms the time scale and the unstable climate proposed for substage 5e. The isotopic response in Termination II is delayed relative to the Devil's Hole record and is in accord with the SPECMAP chronology, but cooling at the end of substage 5e seems to be synchronous between Devil's Hole and the Norwegian flowstones.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Atkinson, T. C. (1983). Growth mechanisms of speleothems in Castleguard Cave, Columbia Icefields, Alberta, Canada. Arctic and Alpine Research 15, 523536.CrossRefGoogle Scholar
Baker, A. Smart, P. L. Edwards, R. L., and Richards, D. A. (1993) Annual growth banding in a cave stalagmite. Nature 364, 518520.CrossRefGoogle Scholar
Bastin, B. (1978). L’analyse pollinique des stalagmites: Une nuuv-possibility d’approche des fluctuations climatiques du quaternaire. Annales de la Societe Geologique de Belgue 101, 1319.Google Scholar
BoUrell, S. H., and Atkinson, T. C. (1992). Tracer study of flow and storage in the unsaturated zone of a karstic limestone aquifer. In“Tracer Hydrology” (Hotzl, H., and Werner, A., Eds.), pp. 207211. Balkema, Rotterdam.Google Scholar
Chen, J. H. Edwards, R. L., and Wasserburg, G. J. (1992). Mass spectrometry and application to uranium-series disequilibrium. In “Uranium-Series Disequilibrium: Applications to Earth, Marine, and Environmental Sciences” (Ivanovich, M., and Harmon, R. S., Eds.), pp. 174206. Clarendon, Oxford.Google Scholar
Crowley, T. J., and North, G. R. (1991). “Paleoclimatology.” Oxford Univ. Press, New York.Google Scholar
Dansgaard, W. (1964), Stable isotopes in precipitation. Tellus 16, 436468.CrossRefGoogle Scholar
Dansgaard, W. Johnsen, S. J. Clausen, H. B. Dahl-Jensen, D. Gundestrup, N. S. Hammer, C. U. Hvidberg, C. S. Steffensen, J. P. Sveinbjomsdottir, A. E. Jouzel, J., and Bond, G. (1993). Evidence for general instability of past climate from a 250-kyr ice-core record. Nature 364, 218220.CrossRefGoogle Scholar
Dreybrodt, W. (1988). “Processes in Karst Systems. Physics, Chemistry and Geology.” Springer Verlag, Berlin.Google Scholar
Ford, D. C., and Williams, P. W. (1989). “Karst geomorphology and Hydrology.” Unwin Hyman, London.CrossRefGoogle Scholar
Friedman, I., and O’Neii, J. R. (1977). Compilation of stable isotope fractionation factors of geochemical interest. U.S. Geological Survey Professional Paper P-0440-KK, 112.Google Scholar
Fritz, P., and Fontes, J. C. (1980). Introduction. In “Handbook of Environmental Isotope Geochemistry” (Fritz, P., and Fontes, J. C., Eds.), pp. 120. Elsevier Scientific, Amsterdam.Google Scholar
Gascoyne, M. (1992). Palaeoclimate determination from cave calcite deposits. Quaternary Science Reviews 11, 609632.CrossRefGoogle Scholar
Gascoyne, M. Schwarcz, H. P., and Ford, D. C. (1980). A palaeotemperature record for the mid-Wisconsin in Vancouver Island. Nature 285, 474476.CrossRefGoogle Scholar
Gascoyne, M. Ford, D. C., and Schwarcz, H. P. (1981). Late Pleistocene chronology and paleoclimate of Vancouver Island determined from cave deposits. Canadian Journal of Earth Sciences 18, 16431652.CrossRefGoogle Scholar
Gat, J. R. (1980). The isotopes of hydrogen and oxygen in precipitation. In “Handbook of Environmental Isotope Geochemistry” (Fritz, P. and Fontes, J. C., Eds.), pp. 2148. Elsevier Scientific, Amsterdam,Google Scholar
GRIP Members (1993). Climate instability during the last interglacial period recorded in the GRIP ice core. Nature 364, 203207.CrossRefGoogle Scholar
Harmon, R. S. Schwarcz, H. P., and Ford, D. C. (1978). Stable isotope geochemistry of speleothems and cave waters from the Flint Ridge-Mammoth Cave system, Kentucky: Implications for terrestrial climate change during the period 230,000 to 100,000 years B.P. Journal of Geology 86, 373384.CrossRefGoogle Scholar
Harmon, R. S. Ku, T.-L. Matthews, R. K.. and Smart, P. L. (1979a). Limits of U-series analysis: Phase 1 results of the Uranium-Series Intercomparison Project. Geology 7, 405409.2.0.CO;2>CrossRefGoogle Scholar
Harmon, R. S. Schwarcz, H. H., and O’Neil, J. R, (1979b). D/H ratios in speleothem fluid inclusions; a guide to variations in the isotopic composition of meteoric precipitation? Earth and Planetary Science Letters 42, 254266.CrossRefGoogle Scholar
Hendy, C. H. (1971). The isotopic geochemistry of speleothems. 1. The calculation of the effects of different modes of formation on the iso-topic composition of speleothems and their applicability as paleoclimatic indicators. Geochimica Cosmochimica Acta 35, 801824.CrossRefGoogle Scholar
Imbrie, J Hays, J. D. Martinson, D. G. McIntyre, A. Mix, A. C. Morley, J. J. Pisias, N. G. Prell, W. L., and Shackleton, J. H, (1984). The orbital theory of pleistocene climate: Support from a revised chronology of the marine 8180 record. In “Milankovitch and Climate” (Berger, A. L., et at, Eds.), Part I, pp. 269305. Reidel, Rotterdam.Google Scholar
Ivanovich, M., and Harmon, R. S. (1982). “Uranium-Series Disequilibrium. Applications to Environmental Problems.” Clarendon, Oxford.Google Scholar
Ivanovich, M., and Harmon, R. S. (1992). “Uranium-Series Disequilibrium: Applications to Earth, Marine, and Environmental Sciences.” Clarendon, Oxford.Google Scholar
Jansen, E., and Veum, T. (1990). Evidence for two-step deglactation and its impact on North Atlantic deep-water circulation. Nature 343, 612616.CrossRefGoogle Scholar
Johnsen, S. J. Clausen, H. B. Dansgaard, W. Fuhrer, K. Gundestrup, N. Hammer, C. U. Iversen, P. Jouzel, J. Stauffer, B., and Steffensen, J. P, (1992). Irregular glacial interstadials recorded in a new Greenland ice core. Nature 359, 311313.CrossRefGoogle Scholar
Kuhn, T. S. (1970). “The Structure of Scientific Revolutions.” Univ. of Chicago Press, Chicago.Google Scholar
Lauritzen, S. E. (1990). Uranium series dating of speleothems: A glacial chronology for Nordland, Norway, for the last 600 ka. Striae 34, 127132.Google Scholar
Lauritzen, S. E. (1993). Natural environmental change in karst: The Quaternary record. Catena Supplement 25, 2140.Google Scholar
Lauritzen, S. E. Ford, D. C., and Schwarcz, H. P. (1986). Humic substances in speleothem matrix-Paleoclitnatic significance. Proceedings, 9th. International Speleological Congress. Barcelona 1, 7779.Google Scholar
Lauritzen, S. E. L0vlie, R. Moe, D., and 0stbye, E. (1990). Paleoclimate deduced from a multidisciplinary study of a half-million-yearold stalagmite from Rana, northern Norway. Quaternary Research 34, 306316.CrossRefGoogle Scholar
Lauritzen, S. E. Haugen, J. E. Gilje-Nilsen, H., and L0vlie, R. (1994). Geochronological potential of isoleucine epimerization in calcite speleothem. Quaternary Research 41, 5258.CrossRefGoogle Scholar
Mangerud, J. (1989). Correlation of the Eemian and the Weichselian with deep sea oxygen isotope stratigraphy. Quaternary International 3/4, 14.Google Scholar
Mangerud, J. S0nstergaard, E., and Sejrup, H. P. (1979). Correlation of the Eemian (interglacial) Stage and the deep-sea oxygen isotope stra-tigraphy. Nature 277, 189192.CrossRefGoogle Scholar
O’Neil, J. R. Clayton, R. N., and Mayeda, T. (1969). Oxygen isotope fractionaltion in divalent metal carbonates. Journal of Chemical Physics 51, 55475558.CrossRefGoogle Scholar
Porter, S. C. (1989). Some geological implications of average Quaternary glacial conditions. Quaternary Research 32, 245261.CrossRefGoogle Scholar
Schackleton, N. J., and Opdyke, N. D. (1973). Oxygen isotope and palaeomagnetic stratigraphy of equtorial Pacific core V-28-238: Oxygen isotope temperatures and ice volumes on a 10s year and 106 year scale. Quaternary Research 3, 3955.CrossRefGoogle Scholar
Schackleton, N. J. Imbrie, J., and Hall, M. A, (1983). Oxygen and carbon isotope record of East pacific core V19-30: Implications for the formation of deep water in the late Pleistocene North Atlantic. Earth and Planetary Science Letters 65, 233244.CrossRefGoogle Scholar
Schwarcz, H. P. (1986). Geochronology and isotope geochemistry in speleothems. In “Handbook of Environmental Isotope Geochemistry” (Fritz, P. and Fontes, J., Eds.), pp. 271303. Elsevier, Amsterdam.Google Scholar
Schwarcz, H. P. et al. (1976a). Stable isotope studies of fluid inclusionsin speleothems and their palaeoclimatic significance. Geochimica Cosmochimica Acta 40, 657665.CrossRefGoogle Scholar
Schwarcz, H. P. Harmon, R. S. Thompson, P., and Ford, D. C. (1976b). Stable isotope studies of fluid inclusions in speleothems and their paleuclimatic significance. Geochirnica Cosmochimka Ada 40, 657665.CrossRefGoogle Scholar
Schwarcz, H. P., and Yonge, C. (1983). Isotopic composition of Paleowaters as inferred from speleothem and its fluid inclusions. In “Paleoclimates and Paleowaters; A Collection of Environmental Isotope Studies.” International Atomic Energy Agency Vienna Austria, Vi-enna.Google Scholar
Seidenkrantz, M. S. (1993). Benthic foraminiferal and stable isotope evidence for a “Younger Dryas-style” cold spell at the Saalian-Eemian transition, Denmark. Palaeogeography, Pa la eoci’tma lology, Palaeoecology 102, 103120.CrossRefGoogle Scholar
Shopov, Y. Dermendjiev, V., and Buykliev, G. (1989). Investigation on the old variations of the climate and solar activity by a new method— LLMZA of cave flowstone from Bulgaria. Proceedings, 10th. International Speleological Congress, Budapest 1, 9597.Google Scholar
Shopov, Y. Ford, D. C. Morrison, J. Schwarcz, H. P. Georgiev, L. N. Sanambria, M. E. Dermendjiev, V., and Buykliev, G. (1992). High resolution speleothem records of quaternary solar activity climate and variations. Geological Society of America, Annual Meeting. Abstracts. 92, A268.Google Scholar
Shopov, Y. Ford, D. C., and Schwarcz, H. P. (1994). Luminescent microbanding in speleothems: High-resolution chronology and paleoclimate. Geology 22, 407410.Google Scholar
Turon, J. L. (1984). Direct land/sea correlations in the last interglacial complex. Nature 309, 673676.CrossRefGoogle Scholar
Wigley, T, M. L., and Brown, M. C. (1976). The Physics of Caves. In“The Science of Speleology” (Ford, T. D. and Cullingford, C. H. D., Eds,), pp. 329358. Academic Press, London.Google Scholar
Wigley, T. M. L. Plummer, L. N., and Pearson, F. J. (1978). Mass transfer and carbon isotope evolution in natural water systems. Geochimica Cosmochimica Acta 42, 11171139.CrossRefGoogle Scholar
Winograd, I. J. Coplen, T. B. Landwehr, J. M. Riggs, A. C. Ludwig, K. R. Szabo, B. J. Kolesar, P, T., and Revez, K. M. (1992). Continuous 500,000-year climate record from vein calcite in Devils Hole, Nevada. Science 2S8, 255260.CrossRefGoogle ScholarPubMed
Yonge, C. J., et al. (1985). Stable Isotope studies of cave seepage water. Chemical Geology 58, 97105.CrossRefGoogle Scholar
Yurtsever, Y., and Gat, I. R. (1981). Atmospheric Waters. In “Stable Isotope Hydrology. Deuterium and Oxygen-18 in the Water Cycle” (Gat, J. R. and Gonfiantini, R., Eds.), pp. 103142. IAEA, Vienna.Google Scholar