Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-24T04:12:38.728Z Has data issue: false hasContentIssue false

High-resolution last deglaciation record from the Congo fan reveals significance of mangrove pollen and biomarkers as indicators of shelf transgression

Published online by Cambridge University Press:  20 January 2017

James Scourse*
Affiliation:
School of Ocean Sciences, University of Wales (Bangor), Menai Bridge, Anglesey LL59 5EY, UK
Fabienne Marret
Affiliation:
School of Ocean Sciences, University of Wales (Bangor), Menai Bridge, Anglesey LL59 5EY, UK
Gerard J.M. Versteegh*
Affiliation:
Netherlands Institute of Sea Research (NIOZ), P.O. Box 59, 1790 AB Den Burg, Texel, The Netherlands
J.H. Fred Jansen
Affiliation:
Netherlands Institute of Sea Research (NIOZ), P.O. Box 59, 1790 AB Den Burg, Texel, The Netherlands
E. Schefuß*
Affiliation:
Marine Geosciences, University of Bremen, P.O. Box 330440, 28334 Bremen, Germany
Johan van der Plicht
Affiliation:
Centre for Isotope Research, University of Groningen, Nijenborgh 4, NL-9747 AG Groningen, The Netherlands
*
*Corresponding author. Fax: +44 1248 716367. E-mail addresses: [email protected] (J. Scourse) [email protected] (F. Marret) [email protected] (G.J.M. Versteegh) [email protected] (J.H.F. Jansen) [email protected] (E. Schefuβ) [email protected] (J. Plicht)
1Current address: Hanse-Wissenschaftskolleg, Lehmkuhlenbusch 4, D-27753 Delmenhorst, Germany.
2Current address: Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA.

Abstract

High abundances of mangrove pollen have been associated with transgressive cycles on tropical margins, but the detailed relations between systems tracts and the taphonomy of the pollen are unclear. We report here the occurrence and high abundance of Rhizophora pollen, in association with taraxerol, a Rhizophora-sourced biomarker, from a high-resolution Congo fan core covering the last deglaciation. An age model based on 14C dates enables the temporal changes in taraxerol content and the percentage frequencies and flux (pollen grains (pg) cm–2 (103 yr)–1) of mangrove pollen to be compared quantitatively with the lateral rate of transgression across the flooding surface (derived from glacio-hydro-isostatic model output and the bathymetry of the margin). Rhizophora pollen concentrations and taraxerol content of the sediment are very strongly positively correlated with the lateral rate of transgression and indicate, independently of any sequence stratigraphic context, that mangrove pollen spikes are associated with the transgressive systems tract rather than the highstand systems tract or maximum flooding surface. Lower-resolution longer-term records from this margin indicate an association between taraxerol concentrations and transgressive rather than regressive phases. The flux of these materials to the Congo fan is interpreted as a function of the erosion of flooded mangrove swamp on the shelf and less importantly, changing extent of mangrove habitat, during sea-level rise. Congo River palaeoflood events also result in reworking of mangrove pollen and supply to the fan, but this mechanism is subdominant. Rhizophora pollen has been underestimated in many palynological studies undertaken on cores from the African margin because of inappropriate sieve mesh size used during laboratory preparation.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Armentrout, J.M., Fearn, L.B., Rodgers, K., Root, S., Lyle, W.D., Herrick, D.C., Bloch, R.B., Snedden, J.W., and Nwankwo, B. (1999). High-resolution sequence biostratigraphy of a lowstand prograding deltaic wedge: Oso Field (late Miocene), Nigeria.Jones, R.W., Simmons, M.D. Biostratigraphy in Production and Development Geology Special Publication-Geological Society of London vol. 152, 259290.CrossRefGoogle Scholar
Barusseau, J.P., Giresse, P., Faure, H., Lezine, A.M., and Masse, J.P. (1988). Marine sedimentary environments on some parts of the tropical and equatorial margins of Africa during the late quaternary. Continental Shelf Research 8, 121.CrossRefGoogle Scholar
Dupont, L.M., and Agwu, C.O.C. (1991). Environmental control of pollen grain distribution patterns in the Gulf of Guinea and offshore NW-Africa. Geologische Rundschau 80, 567589.CrossRefGoogle Scholar
Dupont, L.M., and Weinelt, M. (1996). Vegetation history of the savanna corridor between the Guinean and the Congolian rainforest during the past 150,000 years. Vegetation History and Archaeobotany 5, 273292.Google Scholar
Dupont, L.M., and Wyputta, U. (2003). Reconstructing pathways of aeolian pollen transport to the marine sediments along the coastline of SW Africa. Quaternary Science Reviews 22, 157174.Google Scholar
Dupont, L.M., Jahns, S., and Marret, F. (2000). Vegetation change in equatorial West Africa: time-slices for the last 150 ka. Palaeogeography, Palaeoclimatology, Palaeoecology 155, 95122.Google Scholar
Dupont, L.M., Donner, B., Schneider, R., and Wefer, G. (2001). Mid-pleistocene environmental change in tropical Africa began as early at 1.05 Ma. Geology 29, 195198.Google Scholar
Ellison, J.C. (1989). Pollen analysis of mangrove sediments as a sea-level indicator: assessment from Tongatapu, Tonga. Palaeogeography, Palaeoclimatology, Palaeoecology 74, 327342.Google Scholar
Fairbanks, R.G. (1989). A 17,000 glacial melting rates on the younger dryas event and deep-sea year glacio-eustatic sea level record: Influence of circulation. Nature 342, 637642.CrossRefGoogle Scholar
Fredoux, A. (1994). Pollen analysis of deep-sea core in the Gulf of Guinea-vegetation and climatic changes during the last 225,000 years BP. Palaeogeography, Palaeoclimatology, Palaeoecology 109, 317330.CrossRefGoogle Scholar
Fredoux, A., and Tastet, J.-P. (1993). Analyse pollinique d'une carotte marine au large de la Côte d'Ivoire. Variations de la végétation et du climat depuis 225 000 ans BP. Palynosciences 2, 173188.Google Scholar
Germeraad, J.H., Hopping, C.A., and Muller, J. (1968). Palynology of tertiary sediments from tropical areas. Review of Palaeobotany and Palynology 6, 189348.Google Scholar
Giresse, P. (1980). Carte sédimentologique du plateau continental du Congo.Notice explicative, editions ORSTOM Paris 85, 124.Google Scholar
Giresse, P., Bongo-Passi, G., Delibrias, G., and Duplessy, J.C. (1982). La lithostratigraphie des sédiments hémipélagiques du delta profond du fleuve Congo et ses indications sur les paléoclimats de la fin du Quaternaire. Bulletin Société Géologique de France 7, 803815.Google Scholar
Grindrod, J., Moss, P., and van der Kaars, S. (1999). Late quaternary cycles of mangrove development and decline on the north Australian continental shelf. Journal of Quaternary Science 14, 465470.3.0.CO;2-E>CrossRefGoogle Scholar
Grindrod, J., Moss, P., and van der Kaars, S. (2002). Late quaternary mangrove pollen record from continental shelf and ocean cores in the north Australian-Indonesian region.Kershaw, P., David, B., Tapper, N., Penny, D., Brown, J. Bridging Wallace's Line: The Environmental and Cultural History and Dynamics of the SE-Asian-Australian Region Advances in Geoecology 34, 119146.Google Scholar
Hoorn, C. (1994). Fluvial palaeoenvironments in the intracratonic Amazonas Basin (early Miocene-early middle Miocene Columbia). Palaeogeography, Palaeoclimatology, Palaeoecology 109, 154.CrossRefGoogle Scholar
Jahns, S. (1996). Vegetation history and climate changes in West Equatorial Africa during the late pleistocene and holocene, based on a marine pollen diagram from the Congo fan. Vegetation History and Archaeobotany 5, 207213.Google Scholar
Jansen, J.H.F., and Dupont, L.M. (2001). Data report: a revised composite depth record for site 1077 based on magnetic susceptibility and XRF core scanner (CORTEX) data. Proceedings Ocean Drilling Program. Scientific Results 175, 110.Google Scholar
Koch, B.P., Harder, J., Lara, R.J., and Kattner, G. (2005). Selective microbial degradation of mangrove derived isoprenoid alcohols in surface sediments. Organic Geochemistry 36, 237285.CrossRefGoogle Scholar
Lambeck, K. (1986). Glaciation and sea-level change for Ireland and the Irish Sea since late Devensian/Midlandian time. Journal of the Geological Society 153, 853872.CrossRefGoogle Scholar
Lézine, A-M. ("zine, 1997). )Evolution of the West African mangrove during the late quaternary: a review. Géographie Physique et Quaternaire 51, 405414.Google Scholar
Lézine, A.-M., and Vergnaud-Grazzini, C. ("zine and Vergnaud-Grazzini, 1993). )Evidence of forest extension in west Africa since 22,000 BP: a pollen record from the eastern tropical Atlantic. Quaternary Science Reviews 12, 203210.Google Scholar
Marret, F. (1994). Evolution paléoclimatique et paléohydrologique de l'Atlantique est-équatorial et du proche continent au Quaternaire terminal.Contribution palynologique (kystes de dinoflagellés, pollen et spores).PhD thesis,University of Bordeaux, I, . 271 pp.Google Scholar
Marret, F., Scourse, J.D., Jansen, J.H.F., and Schneider, R. (1999). Changements climatiques et paleoceanographiques en Afrique Central Atlantique au cours de la derniere deglaciation: Contribution palynologique. Comptes Rendus. Académie des Sciences (Paris) 329, 721726.Google Scholar
Marret, F., Scourse, J.D., Versteegh, G., Jansen, J.H.F., and Schneider, R. (2001). Integrated marine and terrestrial evidence for abrupt Congo River palaeodischarge fluctuations during the last deglaciation. Journal of Quaternary Science 16, 761766.CrossRefGoogle Scholar
Morley, R.J. (1995). Biostratigraphic characterization of system tracts in Tertiary sedimentary basins. Proceedings of International Symposium on Sequence Stratigraphy, SE Asia 4971.Google Scholar
Morley, R.J., and Richards, K. (1993). Gramineae cuticle: a key indicator of late cenozoic climatic change in the Niger Delta. Review of Palaeobotany and Palynology 77, 119127.Google Scholar
Peltier, W.R. (1994). Ice age paleotopography. Science 265, 195201.Google Scholar
Pickett, J.W., Macphail, M.K., Partridge, A.D., and Pole, M.S. (1997). Middle miocene palaeotopography at Little Bay, near Maroubra, New South Wales. Australian Journal of Earth Sciences 44, 509518.CrossRefGoogle Scholar
Poumot, C. (1989). Palynological evidence for eustatic events in the tropical Neogene. Bulletin des Centres de Récherches Exploration-Production Elf-Aquitaine 13, 437453.Google Scholar
Richards, P.W. (1996). The Tropical Rain Forest, An Ecological Study.Second ed.Cambridge Univ. Press, Cambridge.Google Scholar
Shackleton, N.J., Berger, A., and Peltier, W.R. (1991). An alternative astronomical calibration of the lower pleistocene timescale based on ODP Site 677. Transactions of the Royal Society of Edinburgh: Earth Sciences 81, 251261.Google Scholar
Shi, N., and Dupont, L.M. (1997). Vegetation and climatic history of southwest Africa: a marine palynological record of the last 300,000 years. Vegetation History and Archaeobotany 6, 117131.Google Scholar
Stuiver, M., Reimer, P.J., Bard, E., Beck, J.W., Burr, G.S., Hughen, K.A., Kromer, B., McCormac, F.G., van der Plicht, J., and Spurk, M. (1998). INTCAL98 radiocarbon age calibration, 24,000-0 cal BP. Radiocarbon 40, 10411084.CrossRefGoogle Scholar
van Campo, E. (1986). Monsoon fluctuations in two 20,000-Yr BP oxygen-isotope/pollen records off southwest India. Quaternary Research 26, 376388.Google Scholar
van Campo, E., and Bengo, M.D. (2004). Mangrove palynology in recent sediments off Cameroon. Marine Geology 208, 315330.Google Scholar
van der Kaars, S., Wang, X., Kershaw, P., and Setiabudi, D.A. (2000). A late quaternary palaeoecological record from the Banda Sea, Indonesia: Patterns of vegetation, climate and biomass burning in Indonesia and Northern Australia. Palaeogeography, Palaeoclimatology, Palaeoecology 155, 135153.Google Scholar
van der Zwan, C.J., and Brugman, W.A. (1999). Biosignals from the EA field, Nigeria.Jones, R.W., Simmons, M.D. Biostratigraphy in Production and Development Geology Special Publication-Geological Society of London 152, 291301.Google Scholar
Versteegh, G., Schefuβ, E., Dupont, L., Marret, F., Sinninghe Damsté, J.S., and Jansen, J.H.F. (2004). Taraxerol and rhizophora pollen as proxies for tracking past mangrove ecosystems. Geochimica and Cosmochimica Acta 68, 411422.Google Scholar
White, F. (1983). The Vegetation of Africa. UNESCO, Paris.Google Scholar