Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-26T20:51:12.284Z Has data issue: false hasContentIssue false

Glacial history of Southernmost South America1

Published online by Cambridge University Press:  20 January 2017

J.H. Mercer*
Affiliation:
Institute of Polar Studies, The Ohio State University, Columbus, Ohio 43210, USA

Abstract

In southernmost South America, an incomplete radiometrically dated glacial chronology has been obtained by K–Ar dating for the interval 3.5-1 MY ago, and a more detailed chronology by C-14 dating for the last 25,000 years, with some older minimal ages. The first major glaciation was about 3.5 MY ago during the middle Pliocene. Little is yet known about glacial fluctuations during the interval 3.5-2.1 MY ago. Between 2.1 and 1 MY ago many glaciations occurred, probably including the greatest of late Cenozoic time which took place after 1.2 MY and, according to inconclusive evidence, before 1 MY ago. The Patagonian Gravel in its type area is mid-Pliocene to early Pleistocene glacial outwash that accumulated from the first to the greatest glaciations. During the late Pleistocene several glaciations occurred, but only the most recent has been radiometrically dated. During the last glaciation the glaciers were most extensive before 56,000 BP. Successively smaller advances that culminated about 19,500 BP and, probably, about 13,000 BP were separated by an interstade when glaciers shrank by more than half. The glaciers receded rapidly after 13,000 BP and were within their present borders by 11,000 BP; they remained so during the European Younger Dryas Stade 11,000-10,000 BP. Neoglacial regional readvances culminated 4600-4200 BP, probably 2700-2000 BP, and during the last three centuries; most glaciers reached their Neoglacial maxima during the first episode. Between readvances, the glaciers shrank within their present borders.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

1

Contribution No. 302 of the Institute of Polar Studies, The Ohio State University, Columbus, Ohio, 43210.

References

Armstrong, J.E., (1975). Quaternary geology, stratigraphic studies and revaluation of terrain inventory maps, Fraser Lowland, British Columbia. Geological Survey of Canada, Paper 75-1 377380Part A.Google Scholar
Bandy, O.L., Casey, R.E., Wright, R.C., (1971). Late Neogene planktonic zonation, magnetic reversals, and radiometric dates, Antarctic to the tropics. Reid, J.L. Antarctic Oceanology, I Antarctic Research Series Vol. 15 American Geophysical Union 126.Google Scholar
Barrett, P.J., (1975). Textural characteristics of Cenozoic preglacial and glacial sediments at Site 270, Ross Sea, Antarctica. Hayes, D.E., Frakes, L.A. Initial Reports of the Deep Sea Drilling Project Vol. 28 U.S. Government Printing Office Washington, D.C 757767.Google Scholar
Berggren, W.A., (1972). Late Pliocene-Pleistocene glaciation. Laughton, A.S., Berggren, W.A. Initial Reports of the Deep Sea Drilling Project Vol. 12 U.S. Government Printing Office Washington, D.C 953963.Google Scholar
Beu, A.G., (1974). Molluscan evidence of warm sea temperatures in New Zealand during Kapitean (Late Miocene) and Waipipian (Middle Pliocene) time. New Zealand Journal of Geology and Geophysics 17 465479.Google Scholar
Blank, R.G., Margolis, S.V., (1975). Pliocene climatic and glacial history of Antarctica as revealed by southeast Indian Ocean deep-sea cores. Geological Society of America Bulletin 86 10581066.Google Scholar
Broecker, W.S., Farrand, W.R., (1963). Radiocarbon age of the Two Creeks forest bed, Wisconsin. Geological Society of America Bulletin 74 795802.Google Scholar
Brüggen, Juan, (1950). Geología. 2nd ed. Editorial Nascimento Santiago, Chile .Google Scholar
Burrows, C.J., (1975). Late Pleistocene and Holocene moraines of the Cameron Valley, Arrowsmith Range, Canterbury, New Zealand. Arctic and Alpine Research 7 125140.Google Scholar
Caldenius, C.C., (1932). Las glaciaciones cuaternárias en la Patagonia y Tierra del Fuego. Geografiska Annaler 14 1164.Google Scholar
Caldenius, C.C., (1940). The Tehuelche or Patagonian shingle formation. A contribution to the study of its origin. Geografiska Annaler 21 160181.Google Scholar
Cepek, A.G., (1965). Geologische Ergebnisse der ersten Radiokarbondatierum von Interstadialen im Lausitzer Urstromtal. Geologie 14 625657.Google Scholar
Ciesielski, P.F., Weaver, F.M., (1974). Early Pliocene temperature changes in the Antarctic seas. Geology 2 511515.Google Scholar
Coope, G.R., Brophy, J.A., (1972). Late Glacial environmental changes indicated by a coleopteran succession from North Wales. Boreas 1 97142.Google Scholar
Corvalán, N. (unpublished). A recent laharic deposit in the lake region at the latitude of Osorno (40° 30′ S)—Chile.Google Scholar
Crandell, D.R., (1968). Mudflow. Fairbridge, R.W. The Encyclopedia of Geomorphology Reinhold New York 763764.Google Scholar
Darwin, C., (1842). On the distribution of the erratic boulders and on the contemporaneous unstratified deposits of South America. Geological Society of London Transactions, Second Series 6 415431.Google Scholar
Denton, G.H., (1974). Quaternary glaciations of the White River Valley, Alaska, with a regional synthesis for the northern St. Elias Mountains, Alaska and Yukon territory. Geological Society of American Bulletin 85 871892.Google Scholar
Denton, G.H., Borns, H.W., (1974). Former grounded ice sheets in the Ross Sea. Antarctic Journal of the United States 9 167.Google Scholar
Denton, G.H., Karlén, W., (1973). Holocene climatic variations—their pattern and possible cause. Quaternary Research 3 155205.Google Scholar
Dreimanis, A., Goldthwait, R.P., (1973). Wisconsin glaciation in the Huron, Erie and Ontario lobes. Black, R.F., Goldthwait, R.P., Willman, H.B. The Wisconsinan Stage Geological Society of America Memoir 136 71106.Google Scholar
Dreimanis, A., Karrow, P.F., (1972). Glacial history in the Great Lakes-St. Lawrence Region, the classification of the Wisconsin(an) Stage, and its correlatives. Twenty-Fourth Session International Geological Congress Quaternary Geology Montreal 515Section 12.Google Scholar
Fenton, E.G., (1921). Studies in the physiography and glacial geology of southern Patagonia. Royal Society of Dublin Scientific Proceedings 16 189225.Google Scholar
Feruglio, E., (1944). Estudios geológicos y glaciológicos en la región del Lago Argentino (Patagonia). Boletín de la Academia Nacional de Ciencias (Córdoba) 37 1208.Google Scholar
Feruglio, Egidio, Feruglio, Egidio, (1949–1950). Descripción geológica de la Patagonia. Buenos Aires, Dirección General Yacimientos Petrolíferos Fiscales Vol. 2(1949) (1949–1950). Descripción geológica de la Patagonia. Buenos Aires, Dirección General Yacimientos Petrolíeros Fiscales Vol. 1(1949) Feruglio, Egidio.Google Scholar
(1949–1950). Descripción geológica de la Patagonia. Buenos Aires, Dirección General Yacimientos Petrolíferos Fiscales Vol. 3(1950).Google Scholar
Fidalgo, F., Riggi, J.C., (1970). Consideraciones geomórficas y sedimentológicas sobre los Rodados Patagónicos. Revista de la Asociación Geológica Argentina 25 430443.Google Scholar
Fillon, R.H., (1973). Radiolarian evidence of late Cenozoic oceanic paleotemperatures, Ross Sea, Antarctica. Palaeogeography, Paleoclimatology, Palaeoecology 14 171185.Google Scholar
Fleck, R.J., Mercer, J.H., Nairn, A.E.M., Peterson, D.N., (1972). Chronology of Late Pliocene and Early Pleistocene glacial and magnetic events in southern Argentina. Earth and Planetary Science Letters 16 1522.Google Scholar
Flint, R.F., (1971). Glacial and Quaternary Geology. Wiley New York .Google Scholar
Flint, R.F., Fidalgo, F., (1964). Glacial geology of the east flank of the Argentine Andes between latitude 39° 10′ S. and latitude 41° 20′S. Geological Society of America Bulletin 75 335352.Google Scholar
Flint, R.F., Fidalgo, F., (1969). Glacial drift in the eastern Argentine Andes between latitude 41° 10′S. and latitude 43° 10′S. Geological Society of America Bulletin 80 10431052.Google Scholar
Frakes, L.A., (1975). Paleoclimatic significance of some sedimentary components at Site 274. Hayes, D.E., Frakes, L.A. Initial Reports of the Deep Sea Drilling Project Vol. 28 U.S. Government Printing Office Washington, D.C 785787.Google Scholar
Frye, J.C., Willman, H.B., (1973). Wisconsinan climatic history interpreted from Lake Michigan Lobe deposits and soils. Black, R.F., Goldthwait, R.P., Willman, H.B. The Wisconsinan Stage Geological Society of America Memoir 136 135152.Google Scholar
Hayes, D.E., Frakes, L.A., (1975). General synthesis, Deep Sea Drilling Project Leg 28. Hayes, D.E., Frakes, L.A. Initial Reports of the Deep Sea Drilling Project Vol. 28 U.S. Government Printing Office Washington, D.C 919942.Google Scholar
Hayes, D.E., Frakes, L.A., (1975). Sites 270, 271, 272. Hayes, D.E., Frakes, L.A. Initial Reports of the Deep Sea Drilling Project Vol. 28 U.S. Government Printing Office Washington, D.C 211334.Google Scholar
Heusser, C.J., (1961). Some comparisons between climatic changes in northwestern North America and Patagonia. Annals of the New York Academy of Sciences 95 642657.Google Scholar
Heusser, C.J., (1966). Late-Pleistocene pollen diagrams from the Province of Llanquihue, southern Chile. American Philosophical Society Proceedings 110 269305.Google Scholar
Heusser, C.J., (1974). Vegetation and climate of the southern Chilean lake district during and since the Last Interglaciation. Quaternary Research 4 290315.Google Scholar
Kennett, J.P., Vella, P., (1975). Late Cenozoic planktonic foraminifera and paleoceanography at DSDP site 284 in the cool subtropical South Pacific. Kennett, J.P., Houtz, R.E. Initial Reports of the Deep Sea Drilling Project Vol. 29 U.S. Government Printing Office Washington, D.C 767797.Google Scholar
Kennett, J.P., Watkins, N.D., (1974). Late Miocene-early Pliocene paleomagnetic stratigraphy, paleoclimatology, and biostratigraphy in New Zealand. Geological Society of America Bulletin 85 13851398.Google Scholar
Kobayashi, H., Hirose, T., Sugino, M., Watanabe, N., (1974). University of Tokyo radiocarbon measurements V. Radiocarbon 16 381387.Google Scholar
Lauer, W., (1968). Die Glaziallandschaft des Südchilenischen Seengebietes. Acta Geographica (Helsinki) 20 215236.Google Scholar
Laugenie, C., (1971). Elementos de la cronología glaciar en los Andes chilenos meridionales. Cuadernos Geográficos del Sur 1 720.Google Scholar
Laugenie, C., Mercer, J.H., (1973). Southern Chile: chronology of the last glaciation. Ninth Congress International Union for Quaternary Research Abstracts IX Congress International Union for Quaternary Research Christchurch 202203.Google Scholar
Livingstone, D.A., (1962). Age of deglaciation in the Ruwenzori Range, Uganda. Nature (London) 194 859860.Google Scholar
Mangerud, J., (1970). Late Weichselian vegetation and ice-front oscillations in the Bergen district, western Norway. Norsk Geografisk Tidsskrift 24 121148.Google Scholar
Mangerud, J., Andersen, S.T., Berglund, B.E., Donner, J.J., (1974). Quaternary stratigraphy of Norden, a proposal for terminology and classification. Boreas 3 109128.Google Scholar
Mathews, W.H., (1974). Surface profiles of the Laurentide Ice Sheet in its marginal areas. Journal of Glaciology 13 3743.Google Scholar
Mercer, J.H., (1965). Glacier variations in southern Patagonia. Geographical Review 55 390413.Google Scholar
Mercer, J.H., (1967). Glacier resurgence at the Atlantic/Subboreal transition. Royal Meteorological Society Quaternary Journal 93 528534.Google Scholar
Mercer, J.H., (1968a). Antarctic ice and Sangamon sea level. International Association of Scientific Hydrology, General Assembly of Berne, Publication 79 217225.Google Scholar
Mercer, J.H., (1968b). Variations of some Patagonian glaciers since the Late-Glacial. American Journal of Science 266 91109.Google Scholar
Mercer, J.H., (1969). The Allerφd Oscillation: a European climatic anomaly. Arctic and Alpine Research 1 227234.Google Scholar
Mercer, J.H., (1970). Variations of some Patagonian glaciers since the Late-Glacial: II. American Journal of Science 269 125.Google Scholar
Mercer, J.H., (1972a). Chilean glacial chronology 20,000−11,000 carbon-14 years ago: some global comparisons. Science 176 11181120.Google Scholar
Mercer, J.H., (1972b). The lower boundary of the Holocene. Quaternary Research 2 1524.Google Scholar
Mercer, J.H., (1973). Cainozoic temperature trends in the southern hemisphere: Antarctic and Andean glacial evidence. van Zinderen Bakker, E.M. Palaeoecology of Africa, and of the surrounding islands and Antarctica Vol. 8 85114Balkema, Cape Town.Google Scholar
Mercer, J.H., Laugenie, C.A., (1973). Glacier in Chile ended a major readvance about 36,000 years ago: some global comparisons. Science 183 10171019.Google Scholar
Mercer, J.H., Fleck, R.J., Mankinen, E.A., Sander, W., (1975). Southern Patagonia: glacial events between 4 MY and 1 MY ago. Suggate, R.P., Cresswell, M.M. Quaternary studies Bulletin 13 Royal Society of New Zealand Wellington, N.Z 223230.Google Scholar
Mörner, N.-A., Dreimanis, A., (1973). The Erie Interstade. Black, R.F., Goldthwait, R.P., Willman, H.B. The Wisconsinan Stage Geological Society of America Memoir 136 107134.Google Scholar
Mullineaux, D.R., Waldron, H.H., Rubin, Meyer, (1965). Stratigraphy and chronology of Late Interglacial and early Vashon Glacial time in the Seattle area, Washington. U.S. Geological Survey Bulletin 1194.Google Scholar
Nordenskjöld, O., (1898). Tertiary and Quaternary deposits in the Magellan territories. American Geologist 21 300309.Google Scholar
Olivares, R.B., (1967). Las glaciaciones cuaternárias al Oeste de Lago Llanquihue en el sur de Chile. Revista Geográfica 67 100108.Google Scholar
Pennington, W., (1975). A chronostratigraphic comparison of Late-Weichselian and Late-Devensian subdivisions, illustrated by two radiocarbon-dated profiles from western Britain. Boreas 4 157171.Google Scholar
Richmond, G.M., (1970). Comparison of the Quaternary stratigraphy of the Alps and Rocky Mountains. Quaternary Research 1 328.Google Scholar
Ruhe, R.F., (1969). Quaternary landscapes in Iowa. Iowa State University Press Ames, Iowa .Google Scholar
Saarnisto, M., (1974). The deglaciation history of the Lake Superior region and its climatic implications. Quaternary Research 4 316339.Google Scholar
Saemundsson, K., Noll, H., (1974). K/Ar ages of rocks from Húsafell, western Iceland, and the development of the Húsafell central volcano. Jökull 24 4059.Google Scholar
Shackleton, N.J., Kennett, J.P., (1975). Late Cenozoic oxygen and carbon isotopic changes at DSDP site 284: implications for glacial history of the northern hemisphere and Antarctica. Kennett, J.P., Houtz, R.E. Initial Reports of the Deep Sea Drilling Project Vol. 29 U.S. Government Printing Office Washington, D.C 801807.Google Scholar
Stuiver, M., Deevey, E.S., Gralenski, L.J., (1960). Yale natural radiocarbon measurements V. American Journal of Science Radiocarbon Supplement 2 4961.Google Scholar
Stuiver, M., Mercer, J.H., Moreno, H.R., (1975). Erroneous date for Chilean glacial advance. Science 188 7374.Google Scholar
Suggate, R.P., Moar, N.T., (1970). Revision of the chronology of the Late Otira Glacial. New Zealand Journal of Geology and Geophysics 13 742746.Google Scholar
Thompson, L.G., Hamilton, W.L., Bull, C., (1975). Climatological implications of microparticle concentrations in the core from “Byrd” station, western Antarctica. Journal of Glaciology 72 433444.Google Scholar
Weischet, W., (1958). Studien über den glazial bedingten Formenschatz der südchilenischen Langssenke im West-Ost Profil beiderseits Osorno. Petermanns Geographische Mitteilungen 102 161172.Google Scholar
Weischet, W., (1964). Geomorfología glacial de la región de los lagos. Communicaciones de la Escuela de Geología Universidad de Chile Santiago No. 4.Google Scholar