Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-13T05:58:45.380Z Has data issue: false hasContentIssue false

Glacial advances constrained by 10Be exposure dating of bedrock landslides, Kyrgyz Tien Shan

Published online by Cambridge University Press:  20 January 2017

Katia Sanhueza-Pino
Affiliation:
Institut für Geologie und Paläontologie, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
Oliver Korup*
Affiliation:
Institut für Erd-und Umweltwissenschaften, Universität Potsdam, 14476 Potsdam, Germany
Ralf Hetzel
Affiliation:
Institut für Geologie und Paläontologie, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
Henry Munack
Affiliation:
Institut für Erd-und Umweltwissenschaften, Universität Potsdam, 14476 Potsdam, Germany
Johannes T. Weidinger
Affiliation:
Erkudok Institute, K-Hof Museums, 4810 Gmunden, Austria
Stuart Dunning
Affiliation:
Division of Geography, Northumbria University, Newcastle Upon Tyne NE1 8ST, UK
Cholponbek Ormukov
Affiliation:
Kyrgyz Institute of Seismology, 720060 Bishkek, Kyrgyzstan
Peter W. Kubik
Affiliation:
Laboratory of Ion Beam Physics, ETH Zurich, CH-8093 Zurich, Switzerland
*
Corresponding author. Fax: + 49 331 977 5700. E-mail address:[email protected] (O. Korup).

Abstract

Numerous large landslide deposits occur in the Tien Shan, a tectonically active intraplate orogen in Central Asia. Yet their significance in Quaternary landscape evolution and natural hazard assessment remains unresolved due to the lack of "absolute" age constraints. Here we present the first 10Be exposure ages for three prominent (> 107 m3) bedrock landslides that blocked major rivers and formed lakes, two of which subsequently breached, in the northern Kyrgyz Tien Shan. Three 10Be ages reveal that one landslide in the Alamyedin River occurred at 11–15 ka, which is consistent with two 14C ages of gastropod shells from reworked loess capping the landslide. One large landslide in Aksu River is among the oldest documented in semi-arid continental interiors, with a 10Be age of 63–67 ka. The Ukok River landslide deposit(s) yielded variable 10Be ages, which may result from multiple landslides, and inheritance of 10Be. Two 10Be ages of 8.2 and 5.9 ka suggest that one major landslide occurred in the early to mid-Holocene, followed by at least one other event between 1.5 and 0.4 ka. Judging from the regional glacial chronology, all three landslides have occurred between major regional glacial advances. Whereas Alamyedin and Ukok can be considered as postglacial in this context, Aksu is of interglacial age. None of the landslide deposits show traces of glacial erosion, hence their locations and 10Be ages mark maximum extents and minimum ages of glacial advances, respectively. Using toe-to-headwall altitude ratios of 0.4–0.5, we reconstruct minimum equilibrium-line altitudes that exceed previous estimates by as much as 400 m along the moister northern fringe of the Tien Shan. Our data show that deposits from large landslides can provide valuable spatio-temporal constraints for glacial advances in landscapes where moraines and glacial deposits have low preservation potential.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abdrakhmatov, K.Y. et al. Relatively recent construction of the Tien Shan inferred from GPS measurements of present-day crustal deformation rates. Nature 384, (1996). 450453.CrossRefGoogle Scholar
Abdrakhmatov, K., Havenith, H.-B., Delvaux, D., Jongmas, D., and Trefois, P. Probabilistic PGA and Arias Intensity maps of Kyrgyzstan (Central Asia). Journal of Seismology 7, (2003). 203220.CrossRefGoogle Scholar
Abramowski, U. et al. Pleistocene glaciations of Central Asia: results from 10Be surface exposure ages of erratic boulders from the Pamir (Tajikistan), and the Alay-Turkestan range (Kyrgyzstan). Quaternary Science Reviews 25, (2006). 10801096.Google Scholar
Aizen, V.B., Aizen, E.M., and Melack, J. Precipitation, melt and runoff in the northern Tien Shan. J. of Hydrol. 186, (1996). 229251.Google Scholar
Aizen, V.B., Aizen, E.M., Melack, J.M., and Dozier, J. Climatic and hydrologic changes in the Tien Shan, Central Asia. American Meteorological Society 10, (1997). 13931404.Google Scholar
Arrowsmith, J.R., Crosby, C.J., Korjenkov, A.M., Mamyrov, E., and Povolotskaya, I.E. Surface rupture of the 1911 Kebin (Chon-Kemin) earthquake, Northern Tien Shan, Kyrgyzstan. Eos Trans. AGU (2005). 86/52 Fall Meet. Suppl., Abstract T51F-05 Google Scholar
Balco, G., Stone, J.O., Lifton, N.A., and Dunai, T.J. A complete and easily accessible means of calculating surface exposure ages or erosion rates from 10Be and 26Al measurements. Quaternary Geochronology 3, (2008). 174195.Google Scholar
Bazhenov, M.L., and Mikolaichuk, A.V. Structural evolution of Central Asia to the North of Tibet: a synthesis of paleomagnetic and geological data (in Russian). Geotectonics 5, (2004). 6884.Google Scholar
Böhner, J. General climatic controls and topoclimatic variations in Central and High Asia. Boreas 35, (2006). 279295.Google Scholar
Bullen, M.E., Burbank, D.W., and Garver, J.I. Building the Northern Tien Shan: integrated thermal, structural and topographic constraints. Journal of Geology 111, (2003). 149165.Google Scholar
Burbank, D.W., McLean, J.K., Bullen, M.E., Abdrakhmatov, K.Y., and Miller, M.M. Partitioning of intramontane basins by thrust-related folding, Tien Shan, Kyrgyzstan. Basin Research 11, (1999). 7592.Google Scholar
Chedia, O.K. Morphostructures and Neotectonics of the Tien Shan. (1986). Ilim Publishers, Frunze. 315 ppGoogle Scholar
Chmeleff, J., von Blanckenburg, F., Kossert, K., and Jakob, D. Determination of the 10Be half-life by multicollector ICP-MS and liquid scintillation counting. Nuclear Instruments and Methods in Physics Research B 268, (2010). 192199.Google Scholar
Davies, T.R., and McSaveney, M.J. The role of rock fragmentation in the motion of large landslides. Engineering Geology 109, (2009). 6779.Google Scholar
Desilets, D., and Zreda, M. Spatial and temporal distribution of secondary cosmic-ray nucleon intensities and applications to in situ cosmogenic dating. Earth and Planetary Science Letters 206, (2003). 2142.CrossRefGoogle Scholar
Desilets, D., Zreda, M., and Prabu, T. Extended scaling factors for in situ cosmogenic nuclides: new measurements at low latitude. Earth and Planetary Science Letters 246, (2006). 265276.Google Scholar
Dortch, J.W., Owen, L.A., Haneberg, W.C., Caffee, M.W., Dietsch, C., and Kamp, U. Nature and timing of large landslides in the Himalaya and Transhimalaya of northern India. Quaternary Science Reviews 28, (2009). 10371054.CrossRefGoogle Scholar
Dufresne, A., and Davies, T.R. Longitudinal ridges in mass movement deposits. Geomorphology 105, (2009). 171181.Google Scholar
Dunai, T.J. Influence of secular variation of the geomagnetic field on production rates of in situ produced cosmogenic nuclides. Earth and Planetary Science Letters 193, (2001). 197212.Google Scholar
Goethals, M.M., Hetzel, R., Niedermann, S., Wittmann, H., Fenton, C.R., Kubik, P.W., Christl, M., and von Blanckenburg, F. An improved experimental determination of cosmogenic 10Be/21Ne and 26Al/21Ne production ratios in quartz. Earth and Planetary Science Letters 284, (2009). 187198.Google Scholar
Goodfriend, G.A. Chronostratigraphic studies of sediments in the Negev desert, using amino acid epimerization analysis of land snail shells. Quaternary Research 28, (1987). 374392.Google Scholar
Goodfriend, G.A., and Ellis, G.L. Stable carbon isotope record of middle to late Holocene climate changes from snail shells at Hinds Cave, Texas. Quaternary International 67, (2000). 4760.Google Scholar
Goodfriend, G.A., and Stipp, J.J. Limestone and the problem of radiocarbon dating of land-snail shell carbonate. Geology 11, (1983). 575577.Google Scholar
Gorbunov, A.P., and Seversky, E.V. Solifluction in the mountains of Central Asia: distribution, morphology, processes. Permafrost and Periglacial Processes 10, (1999). 8189.3.0.CO;2-3>CrossRefGoogle Scholar
Gorbunov, A.P., and Titkov, S.N. Dynamics of rock glaciers of the Northern Tien Shan and the Djungar Ala Tau, Kazakhstan. Permafrost and Periglacial Processes 3, (1992). 2939.CrossRefGoogle Scholar
Heuberger, H., and Sgibnev, V.V. Paleoglaciological studies in the Ala-Archa National Park, Kyrgyzstan, Northern Tian-Shan Mountains, and using multitextural analysis as a sedimentological tool for solving stratigraphical problems. Zeitschrift für Gletscherkunde und Glaziologie 34, (1998). 95123.Google Scholar
Hewitt, K. Quaternary moraines vs catastrophic rock avalanches in the Karakoram Himalaya, northern Pakistan. Quaternary Research 51, (1999). 220237.Google Scholar
Hewitt, K. Glacially conditioned rock-slope failures and disturbance-regime landscapes, Upper Indus Basin, northern Pakistan. Knight, J., and Harrison, S. Periglacial and Paraglacial Processes and Environments. Geological Society of London Special Publication 320, (2009). 235255.CrossRefGoogle Scholar
Hormes, A., Ivy-Ochs, S., Kubik, P.W., Ferreli, L., and Maria Michetti, A. 10Be exposure ages of a rock avalanche and a late glacial moraine in Alta Valtellina, Italian Alps. Quaternary International 190, (2008). 136145.CrossRefGoogle Scholar
Ivy-Ochs, S., Poschinger, A.v., Synal, A.H., and Maisch, M. Surface exposure dating of the Flims landslide, Graubünden, Switzerland. Geomorphology 103, (2009). 104112.CrossRefGoogle Scholar
Jibson, R.W., Harp, E.L., Schulz, W., and Keefer, D.K. Large rock avalanches triggered by the M 7.9 Denali Fault, Alaska, earthquake of 3 November 2002. Engineering Geology 83, (2006). 144160.CrossRefGoogle Scholar
Kohl, C.P., and Nishiizumi, K. Chemical isolation of quartz for measurement of in-situ-produced cosmogenic nuclides. Geochimica et Cosmochimica Acta 56, (1992). 35833587.Google Scholar
Kong, P., Fink, D., Na, C., and Huang, F. Late Quaternary glaciation of the Tianshan, Central Asia, using cosmogenic 10Be surface exposure dating. Quaternary Research 72, (2009). 229233.Google Scholar
Koppes, M., Gillespie, A.R., Burke, R.M., Thompson, S.C., and Stone, J. Late Quaternary glaciation in the Kyrgyz Tien Shan. Quaternary Science Reviews 27, (2008). 846866.Google Scholar
Korjenkov, A.M., Mamyro, E., Omuraliev, M., Kovalenko, V.A., and Usmanov, S.F. Rock avalanches and landslides formed in result of the Suusamyr Earthquake (1992, M = 7.4) in the Northern Tien Shan — test structures for mapping of paleoseismic deformations by satellite images. Proceedings 7th International Symposium on High Mountain Remote Sensing Cartography. Bishkek. Kartographische Bausteine 28, (2002). 137154.Google Scholar
Korschinek, G., Bergmaier, A., Faestermann, T., Gerstmann, U.C., Knie, K., Rugel, G., Wallner, A., Dillmann, I., Dollinger, G., von Gostomski, C.L., Kossert, K., Maiti, M., Poutivtsev, M., and Remmert, A. A new value for the half-life of 10Be by heavy-ion elastic recoil detection and liquid scintillation counting. Nuclear Instruments and Methods in Physics Research B 268, (2010). 187191.CrossRefGoogle Scholar
Korup, O., and Clague, J.J. Natural hazards, extreme events, and mountain topography. Quaternary Science Reviews 28, (2009). 977990.CrossRefGoogle Scholar
Kotlyakov, V.M., Serebryanny, L.R., and Solomina, O.N. Climate change and glacier fluctuation during the last 1,000 years in the southern mountains of the USSR. Mountain Research and Development 11, 1 (1991). 112.CrossRefGoogle Scholar
Kubik, P.W., and Christl, M. 10Be and 26Al measurements at the Zurich 6 MV Tandem AMS facility. Nuclear Instruments and Methods in Physics Research B 268, (2010). 880883.Google Scholar
Lal, D. Cosmic ray labelling of erosion surfaces: in situ nuclide production rates and erosion models. Earth and Planetary Science Letters 104, (1991). 424439.Google Scholar
Lifton, N.A., Bieber, J.W., Clem, J.M., Duldig, M.L., Evenson, P., Humble, J.E., and Pyle, R. Addressing solar modulation and long-term uncertainties in scaling secondary cosmic rays for in situ cosmogenic nuclide applications. Earth and Planetary Science Letters 239, (2005). 140161.Google Scholar
Makarov, V.I. Newest Tectonic Structure of the Central Tien Shan. (1977). Science, Moscow, Russia. 172 ppGoogle Scholar
Marchenko, S.S., Gorbunov, A.P., and Romanovsky, V.E. Permafrost warming in the Tien Shan Mountains, Central Asia. Global and Planetary Change 56, (2007). 311327.CrossRefGoogle Scholar
Mitchell, W.A., McSaveney, M.J., Zondervan, A., Kim, K., Dunning, S.A., and Taylor, P.J. The Keylong Serai rock avalanche, NW Indian Himalaya: geomorphology and palaeoseismic implications. Landslides 4, (2007). 245254.Google Scholar
Molnar, P., and Tapponier, P. Cenozoic tectonics of Asia: effects of a continental collision. Sience 189, (1975). 419426.Google Scholar
Narama, C., Kondo, R., Tsukamoto, S., Kajiura, T., Ormukov, C., and Abdrakhmatov, K. OSL dating of glacial deposits during the Last Glacial in the Terskey-Alatoo Range, Kyrgyz Republic. Quaternary Geochronology 2, (2007). 249254.Google Scholar
Narama, C., Kondo, R., Tsukamoto, S., Kjiura, T., Duishanakunov, M., and Abdrakhmatov, K. Timing of glacier expansion during the Last Glacial in the inner Tien Shan, Kyrgyz Republic by OSL dating. Quaternary International 199, (2009). 147156.Google Scholar
Niedermann, S. Cosmic-ray-produced noble gases in terrestrial rocks: dating tools for surface processes. Noble gases in geochemistry and cosmochemistry. Reviews in Mineralogy & Geochemistry 47, (2002). 731784.Google Scholar
Oskin, M.E., and Burbank, D.W. Alpine landscape evolution dominated by cirque retreat. Geology 33, (2005). 933936.Google Scholar
Oskin, M.E., and Burbank, D.W. Transient landscape evolution of basement-cored uplifts: example of the Kyrgyz Range, Tian Shan. Journal of Geophysical Research 112, (2007). F03S03 doi:http://dx.doi.org/10.1029/2006JF000563 Google Scholar
Pigati, J.S., Rech, J.A., and Nekola, J.C. Radiocarbon dating of small terrestrial gastropod shells in North America. Quaternary Geochronology 5, (2010). 519532.Google Scholar
Quarta, G., Romaniello, L., D'Elia, M., Mastronuzzi, G., and Calcagnile, L. Radiocarbon age anomalies in pre- and post-bomb land snails from the coastal Mediterranean Basin. Radiocarbon 49, (2007). 817826.Google Scholar
Reigber, C. et al. New space geodetic constraints on the distribution of deformation in Central Asia. Earth and Planetary Science Letters 191, (2001). 157165.Google Scholar
Reimer, P.J. et al. IntCal04 terrestrial radiocarbon age calibration, 0–20 cal kyr BP. Radiocarbon 46, (2004). 10291058.Google Scholar
Romaniello, L., Quarta, G., Mastronuzzi, G., D'Elia, M., and Calcagnile, L. 14C age anomalies in modern land snails shell carbonate from Southern Italy. Quaternary Geochronology 3, (2008). 6875.CrossRefGoogle Scholar
Sadybakasov, I. Neotectonics of Central Part of the Tien Shan. (1972). Ilim, Frunze. 117 ppGoogle Scholar
Solomina, O., Barry, R., and Bodnya, M. The retreat of Tien Shan glaciers (Kyrgyzstan) since the Little Ice Age estimated from aerial photographs, lichenometric and historical data. Geografiska Annaler 86 A, (2004). 205215.Google Scholar
Stone, J.O. Air pressure and cosmogenic isotope production. Journal of Geophysical Research 105, (2000). 2375323759.Google Scholar
Strom, A.L., and Korup, O. Extremely large rockslides and rock avalanches in the Tien Shan Mountains, Kyrgyzstan. Landslides 3, (2006). 125136.Google Scholar
Stuiver, M., and Polach, H.A. Discussion: reporting of 14C data. Radiocarbon 19, 3 (1977). 355363.Google Scholar
Stuiver, M., Reimer, P.J., and Reimer, R. CALIB Radiocarbon Calibration. (2009). http://radiocarbon.pa.qub.ac.uk/calib Google Scholar
Thompson, S.C., Weldon, R.J., Rubin, C.M., Abdrakhmatov, K., Molnar, P., and Berger, G.W. Late Quaternary slip rates across the central Tien Shan, Kyrgyzstan, central Asia. Journal of Geophysical Research 107, (2002). B9 http://dx.doi.org/10.1029/2001JB000596 CrossRefGoogle Scholar
Xu, X., Kleidon, A., Miller, L., Wang, S., Wang, L., and Dong, G. Late Quaternary glaciation in the Tianshan and implications for paleoclimatic change: a review. Boreas 39, (2010). 215232. http://dx.doi.org/10.1111/j.1502-3885.2009.00118.x Google Scholar
Zech, R., Abramowski, U., Glaser, B., Sosin, P., Kubik, P.W., and Zech, W. Late Quaternary glacial and climate history of the Pamir mountains derived from cosmogenic 10Be exposure ages. Quaternary Research 64, (2005). 212220.Google Scholar
Supplementary material: File

Sanhueza-Pino et al. Supplementary Material

Table S1

Download Sanhueza-Pino et al. Supplementary Material(File)
File 64 KB