Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-20T17:46:26.393Z Has data issue: false hasContentIssue false

Geomorphological, paleontological and 87Sr/86Sr isotope analyses of early Pleistocene paleoshorelines to define the uplift of Central Apennines (Italy)

Published online by Cambridge University Press:  20 January 2017

Marco Mancini*
Affiliation:
CNR-Istituto di Geologia Ambientale e Geoingegneria, via Bolognola 7-00138, Roma, Italy
Elisabetta D'Anastasio
Affiliation:
Istituto Nazionale di Geofisica e Vulcanologia, CNT, via di Vigna Murata 605, 00143, Roma, Italy Istituto Nazionale di Geofisica e Vulcanologia, Centro per la Sismologia e l'Ingegneria Sismica, via Castello d'Aquino 13, 83035, Grottaminarda (AV), Italy
Mario Barbieri
Affiliation:
CNR-Istituto di Geologia Ambientale e Geoingegneria, via Bolognola 7-00138, Roma, Italy Università degli Studi di Roma “La Sapienza”, Dipartimento di Scienze della Terra, p.le A. Moro 5-00183, Roma, Italy
Paolo Marco De Martini
Affiliation:
Istituto Nazionale di Geofisica e Vulcanologia, CNT, via di Vigna Murata 605, 00143, Roma, Italy UMR 7516, IPG Strasbourg, EOST, Universite' Louis Pasteur, Strasbourg, France
*
*Corresponding author. E-mail addresses:[email protected](M. Mancini), [email protected](E. D'Anastasio), [email protected](M. Barbieri), [email protected](P.M. De Martini).

Abstract

The eastern border of the Middle Valley of the Tiber River is characterized by several Plio-Pleistocene paleoshorelines, which extend for about 100 km along the western margin of the Central Apennines (Italy). We studied these paleoshorelines by the means of geological and paleontological analyses and new 87Sr/86Sr isotope analyses. The youngest and uppermost paleoshorelines have been detected and mapped through detailed geologic and stratigraphic surveys, which led to the recognition of nearshore deposits, cliff breccias, alignments of Lithophaga borings, fossil abrasion notches and wave-cut platforms. The altitude of these paleoshorelines decreases almost regularly in the NNW–SSE direction from 480 to 220 m a.s.l. Measurements of the 87Sr/86Sr isotope ratio have been conducted on corals and mollusks collected from sediments outcropping close to the paleoshorelines. The isotopic dating results indicate numerical values that range between 0.70907 and 0.70910 all over the 100-km outcrop. These results, together with biostratigraphic data, constrain the age of the youngest paleoshorelines to 1.65–1.50 Ma. These paleoshorelines are thus considered almost isochronous, giving an estimated uplift rate of 0.34–0.17±0.03 mm/a moving from NNW to SSE. Shape, length and continuity of the 100-km-long observed movements indicate that the studied paleoshorelines are an important marker of the Quaternary uplift of the Central Apennines.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

1 Fax: +39 06 51860507.

References

Alfonsi, L., Funiciello, R., Mattei, M., Girotti, O., Maiorani, A., Martinez, M.P., Trudu, C., and Turi, B. Structural and geochemical features of the Sabina strike-slip fault (Central Apennines). Bollettino della Società Geologica Italiana 110, (1991). 217230.Google Scholar
Amato, A., and Cinque, A. Erosional landsurfaces of the Campano-Lucano Apennines (S. Italy): genesis, evolution, and tectonic implications. Tectonophysics 315, (1999). 251267.Google Scholar
Amato, A., and Montone, P. Present-day stress field and active tectonics in southern peninsular Italy. Geophysical Journal International 130, (1997). 519534.Google Scholar
Amato, A., Alessandrini, B., Cimini, G.B., Frepoli, A., and Selvaggi, G. Active and remnant subducted slabs beneath Italy: evidence from seismic tomography and seismicity. Annali di Geofisica 36, (1993). 201214.Google Scholar
Ambrosetti, P., Carboni, M.G., Conti, M.A., Esu, D., Girotti, O., La Monica, G.B., Landini, B., and Parisi, G. Il Pliocene ed il Pleistocene inferiore del Bacino del Fiume Tevere nell'Umbria meridionale. Geografia Fisica e Dinamica Quaternaria 10, (1987). 1033.Google Scholar
Antonioli, F., Ferranti, L., and Kershaw, S. A glacial isostatic adjustment origin for double MIS 5.5 and Holocene marine notches in the coastline of Italy. Quaternary International 145–146, (2006). 1929.Google Scholar
Ascione, A., and Romano, P. Vertical movements on the eastern margin of Tyrrhenian extensional basin. New data from Mt. Bulgheria (Southern Apennines, Italy). Tectonophysics 315, (1999). 337356.Google Scholar
Barberi, F., Buonasorte, G., Cioni, R., Fiordalisi, A., Foresi, L., Iaccarino, S., Laurenzi, M.A., Sbrana, A., Vernia, L., and Villa, I.M. Plio-Pleistocene geological evolution of the geothermal area of Tuscany and Latium. Memorie Descrittive della Carta Geologica d'Italia 49, (1994). 77134.Google Scholar
Bardaj, T., Dabrio, C.J., Goy, J.L., Somoza, L., and Zazo, C. Pleistocene fan deltas in southeastern Iberian peninsula: sedimentary controls and-sea level changes. Colella, A., and Prior, D.B. Coarse-Grained Deltas. IAS Spec. Publ. vol. 10, (1990). 129151.Google Scholar
Bartolini, C. Uplift and erosion: driving processes and resulting landforms. Editor Quaternary International 101–102, (2003). 280 Google Scholar
Bordoni, P., and Valensise, G. Deformation of the 125 ka marine terrace in Italy: tectonic implications. Stewart, I.S., and Vita-Finzi, C. “Coastal Tectonics”. Special Publication-Geological Society of London vol. 146, (1998). 71110.Google Scholar
Bromley, R.G., and Asgaard, U. Two bioerosion ichnofacies produced by early and late burial associated with sea-level change. Geologische Rundschau 82, (1993). 276280.Google Scholar
Burbank, D.W., and Anderson, R.S. Tectonic Geomorphology. (2001). Blackwell Science, Oxford. 274 pp.Google Scholar
Cavinato, G.P., and De Celles, P. Extensional basins in the tectonically bimodal central apennines fold-thrust belt, Italy: response to corner flow above a subducting slab in retrograde motion. Geology 27, (1999). 955958.Google Scholar
Cavinato, G.P., Cosentino, D., De Rita, D., Funiciello, R., and Parotto, M. Tectonic sedimentary evolution of intrappeninic basins and correlation with the volcano-tectonic activity in central Italy. Memorie Descrittive della Carta Geologica d'Italia 49, (1994). 6375.Google Scholar
Centamore, E., and Nisio, S. Effects of uplift and tilting in the Central–Northern Apennines (Italy). Quaternary International 101–102, (2003). 93101.Google Scholar
Ciangherotti, A.D., Esu, D., and Girotti, O. Review of the history of the Late Neogene-Early Quaternary non-marine molluscs of Italy. Van Kolfshoten, T., and Gibbard, P.L. The Dawn of the Quaternary: Proceedings of the SEQS-EuroMam symposium 1996. Meded.-Ned. Inst. Toegepaste Geowet. TNO vol. 60, (1998). 491498.Google Scholar
Cinque, A., Patacca, E., Scandone, P., and Tozzi, M. Quaternary kinematic evolution of the Southern Apennines. Relationships between surface geological features and deep lithospheric structures. Annali di Geofisica 36, (1993). 249260.Google Scholar
Cosentino, D., and Gliozzi, E. Considerazioni sulle velocità di sollevamento dei depositi eutirreniani dell'Italia meridionale e della Sicilia. Memorie della Società Geologica Italiana 41, (1988). 653665.Google Scholar
Cosentino, D., Miccadei, E., and Parotto, M. Assetto geologico-strutturale dei Monti di Fara in Sabina (Lazio, Appennino centrale). Geologica Romana 29, (1993). 537545.Google Scholar
D'Agostino, N., Jackson, J.A., Dramis, F., and Funiciello, R. Interactions between mantle upwelling, drainage evolution and active normal faulting: an example from the central Apennines (Italy). Geophysical Journal International 147, (2001). 475497.Google Scholar
D'Anastasio, E., (2004). Analisi e integrazione di dati geodetici ed elementi geologici per la definizione del campo di deformazione verticale a breve e lungo termine in Appennino (Italia). Ph.D. dissertation in Geophysics, XVI cycle, Dipartimento di Fisica, Università degli Studi di Bologna, 189 pp., Bologna.Google Scholar
D'Anastasio, E., De Martini, P.M., Selvaggi, G., Pantosti, D., Marchioni, A., and Maseroli, R. Short-term vertical velocity field in the Apennines (Italy) revealed by geodetic levelling data. Tectonophysics 418, (2006). 219234.Google Scholar
De Gibert, J.M., Martinell, J., and Domènech, R. Entobia Ichnofacies in fossil rocky shores, Lower Pliocene, Northwestern Mediterranean. Palaios 13, (1998). 476487.Google Scholar
Di Bella, L., Carboni, M.G., and Bergamin, L. Pliocene–Pleistocene foraminiferal assemblages of the middle and lower Tiber Valley: stratigraphy and paleoecology. Geologica Romana (2000–2002) 36, (2001). 129145.Google Scholar
Dramis, F. Il ruolo dei sollevamenti tettonici a largo raggio nella genesi del rilievo appenninico. Studi Geologici Camerti 1992/1 (1993). 915. (spec. Vol.) Google Scholar
Dufaure, J.J., Bossuyt, D., and Rasse, M. Deformations Quaternaires et morphogenese de l'Apennin Central Adriatique. Phisio-Geo 18, (1988). 946.Google Scholar
Ferranti, L., Antonioli, F., Mauz, B., Amorosi, A., Dai Pra, G., Mastronuzzi, G., Monaco, C., Orrù, P., Pappalardo, M., Radtke, U., Renda, P., Romano, P., Sansò, P., and Verrubbi, V. Markers of the last interglacial sea-level high stand along the coast of Italy: tectonic implications. Quaternary International 145–146, (2006). 3054.Google Scholar
Funiciello, R., and Parotto, M. Il substrato sedimentario nell'area dei Colli Albani: considerazioni geodinamiche e paleogeografiche sul margine tirrenico dell'Appennino centrale. Geologica Romana 17, (1978). 233287.Google Scholar
Galadini, F., and Galli, P. Active tectonics in the Central Apennines (Italy)—Input data for seismic hazard assessment. Natural Hazards 22, (2000). 225270.Google Scholar
Galadini, F., Messina, P., Giaccio, B., and Sposato, A. Early uplift history of the Abruzzi Apennines (central Italy): available geomorphological constraints. Quaternary International 101–102, (2003). 125135.Google Scholar
Girotti, O., and Mancini, M. Plio-Pleistocene stratigraphy and relations between marine and non-marine successions in the Middle Valley of the Tiber River (Latium, Umbria). Il Quaternario 16, 1 Bis (2003). 89106.Google Scholar
Girotti, O., and Piccardi, E. Linee di riva del Pleistocene inferiore sul versante sinistro della media Valle del Fiume Tevere. Il Quaternario 7, (1994). 525536.Google Scholar
Giunchi, C., Sabadini, R., Boschi, E., and Gasperini, P. Dynamic models of subduction: geophysical and geological evidence in the Tyrrhenian. Geophysical Journal International 126, (1996). 555578.Google Scholar
Haq, B.U., Hardenbol, J., and Vail, P.R. Chronology of the fluctuating sea levels since the Triassic. Science 235, (1987). 11561167.Google Scholar
Hippolyte, J.C., Angelier, J., and Roure, F. A major geodynamic change revealed by Quaternary stress patterns in the Southern Apennines (Italy). Tectonophysics 230, (1994). 199210.Google Scholar
Hodell, D.A., Mead, G.A., and Mueller, P.A. Variation in the strontium isotopic composition of seawater (8 Ma to present): implication for chemical weathering rates and dissolved fluxes to the oceans. Chemical Geology 80, (1990). 291307.Google Scholar
Jackson, J.A., White, N.J., Garfunkel, Z., and Anderson, H. Relations between normal-fault geometry, tilting and vertical motions in extensional terrains: an example from the southern Gulf of Suez. Journal of Structural Geology 10, (1988). 155170.Google Scholar
Lajoie, K.R. Coastal tectonics. Wallace, R. Active Tectonics. (1986). National Academy Press, Washington. 95124.Google Scholar
Little, C. The Biology of Soft Shores and Estuaries. (2000). Oxford Univ. Press, Oxford. 252 pp.Google Scholar
Locardi, E., Funiciello, R., Lombardi, G., and Parotto, M. The main volcanic groups of Latium (Italy): relations between structural evolution and petrogenesis. Geologica Romana 15, (1977). 279300.Google Scholar
Malatesta, A. Malacofauna pliocenica umbra. Memorie Descrittive della Carta Geologica d'Italia 13, (1974). 1464.Google Scholar
Malatesta, A., and Zarlenga, F. Evoluzione paleogeografico-strutturale plio-pleistocenica del basso Bacino romano e a Sud del Tevere. Memorie della Società Geologica Italiana 35, (1986). 7598.Google Scholar
Malinverno, A., and Ryan, W.B.F. Extension in the Tyrrhenian Sea and shortening in the Apennines as a result of arc migration driven by sinking of the lithosphere. Tectonics 5, (1986). 227245.Google Scholar
Mancini, M., (2000). Stratigrafia dei depositi fluviali e costieri pleistocenici nella Media Valle del Tevere. PhD dissertation in Earth Science, XII cycle, Dip. Scienze della Terra, Università degli Studi di Roma “La Sapienza”, 211 pp., Rome.Google Scholar
Mancini, M., and Cavinato, G.P. The Middle Valley of the Tiber River, central Italy: Plio-Pleistocene fluvial and coastal sedimentation, extensional tectonics and volcanism. Blum, M.D., Marriott, S., and Leclair, S. Fluvial Sedimentology VII. IAS Spec. Publ. vol. 35, (2005). 373396.Google Scholar
Mancini, M., Girotti, O., and Cavinato, G.P. Il Pliocene e il Quaternario della Media Valle del Tevere. Geologica Romana (2003–2004) 37, (2004). 175236.Google Scholar
Massari, F., and Parea, G.C. Progradational gravel beach sequences in a moderate- to high-energy, microtidal environment. Sedimentology 35, (1988). 881913.Google Scholar
Miller, K.G., Kominz, M.A., Browning, J.V., Wright, J.D., Mountain, G.S., Katz, M.E., Sugarman, P.J., Cramer, B.S., Christie-Blick, N., and Pekar, S.F. The phanerozoic record of global sea-level change. Science 310, (2005). 12931298.Google Scholar
Montone, P., Amato, A., and Pondrelli, S. Active stress map of Italy. Journal of Geophysical Research 104, (1999). 2559525610.Google Scholar
Nisi, M.F., Antonioli, F., Dai Pra, G., Leoni, G., and Silenzi, S. Coastal deformation between the Versilia and the Garigliano plains (Italy) since the last interglacial stage. Journal of Quaternary Science 18, 8 (2003). 709721.Google Scholar
Nybakken, J.W. Marine Biology: An Ecological Approach. 5th edition (2001). Benjamin Cummings, San Francisco. 516 pp.Google Scholar
Parotto, M., and Praturlon, A. Geological summary of the Central Apennines. CNR-Quaderni de La Ricerca Scientifica 90, (1975). 257311.Google Scholar
Pasini, G., and Colalongo, M.L. Proposal for the erection of the Santernian/Emilian boundary stratotype (Lower Pleistocene) and new data on the Pliocene/Pleistocene boundary-stratotype. Bollettino della Società Paleontologica Italiana 33, (1994). 101120.Google Scholar
Patacca, E., and Scandone, P. Late thrust propagation and sedimentary response in the thrust-belt-foredeep system of the Southern Apennines (Pliocene–Pleistocene). Vai, G.B., and Martini, I.P. Anatomy of an Orogen: the Apennines and Adjacent Mediterranean Basins. (2001). Kluwer Academic Publishers, Great Britain. 401440.Google Scholar
Patacca, E., Sartori, R., and Scandone, P. Tyrrhenian Basin and Apenninic Arcs: kinematics relations since Late Tortonian time. Memorie della Società Geologica Italiana 45, (1992). 425451.Google Scholar
Pedley, M., and Grasso, M. Lithofacies modelling and sequence stratigraphy in microtidal cool-water carbonates: a case study from the Pleistocene of Sicily, Italy. Sedimentology 49, (2002). 533553.Google Scholar
Piccardi, E., (1993). Il Plio-Pleistocene in sinistra del Tevere dal Lago di Corbara a Magliano in Sabina. PhD dissertation in Earth Science, V cycle, Dip. Scienze della Terra, Università degli Studi di Roma “La Sapienza”,, 210 pp., Rome.Google Scholar
Pondrelli, S., Morelli, A., Ekström, G., Mazza, S., Boschi, E., and Dziewonski, A.M. European–Mediterranean regional centroid moment tensors: 1997–2000. Physics of the Earth and Planetary Interiors 130, (2002). 71101.Google Scholar
Reading, H.G., and Collinson, J.D. Clastic coasts. Reading, H.G. Sedimentary Environments: Processes, Facies and Stratigraphy. 3rd edition (1996). Blackwell Science, Oxford. 154231.Google Scholar
Selvaggi, G., and Chiarabba, C. Seismicity and P-wave velocity image of the Southern Tyrrhenian subduction zone. Geophysical Journal International 121, (1995). 818826.Google Scholar
Spakman, W., van der Lee, S., and van der Hilst, R. Travel-time tomography of the European–Mediterranean mantle down to 1400 km. Physics of the Earth and Planetary Interiors 79, (1993). 374.Google Scholar
Summerfield, M.A. Global Geomorphology. (1991). Longman, Singapore. 537 ppGoogle Scholar
Valensise, G., and Pantosti, D. The investigation of potential earthquake sources in peninsular Italy: a review. Journal of Seismology 5, (2001). 287306.Google Scholar
Valensise, G., and Pantosti, D. Database of Potential Sources for earthquakes larger than M 5.5 in Italy. Annali di Geofisica 44, 4 (2001). 964 (suppl.) Google Scholar
Vannoli, P., Basili, R., and Valensise, G. New geomorphic evidence for anticlinal growth driven by blind-thrust faulting along the northern Marche coastal belt (central Italy). Journal of Seismology 8, 3 (2004). 297312.Google Scholar
Wessel, P., and Smith, W.H.F. New version of the Generic Mapping Tools released. Eos Transactions AGU 76, 33 (1995). 329 Google Scholar
Westaway, R. Quaternary uplift of Southern Italy. Journal of Geophysical Research 97, (1993). 1543715464.Google Scholar