Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-26T16:41:27.686Z Has data issue: false hasContentIssue false

Geochronology of Middle and Upper Pleistocene Loess Sections in Hungary

Published online by Cambridge University Press:  20 January 2017

Manfred Frechen
Affiliation:
Centre for Environmental Change and Quaternary Research, CGCHE, Francis Close Hall, Swindon Road, Cheltenham, GL50 4AZ, United Kingdom
Erzsébet Horváth
Affiliation:
Eötvös Loránd University, Department of Physical Geography, Ludovika tér 2, H-1083, Budapest, Hungary
Gyula Gábris
Affiliation:
Eötvös Loránd University, Department of Physical Geography, Ludovika tér 2, H-1083, Budapest, Hungary

Abstract

The application of both thermoluminescence and infrared stimulated luminescence dating to the extensively studied “classical” Hungarian loess/paleosol sequences from Basaharc, Mende, and Paks provides a reliable chronological framework and climatostratigraphic reconstruction for the last interglacial/glacial cycle. Based on this combined luminescence dating study a new chronology is proposed for the “Young Loess” in Hungary. Luminescence dating suggests that the loess below the MF2 horizon formed during the penultimate glaciation. The MF1 horizon probably formed during an interstade within oxygen isotope stage 3. For the youngest loess, overlying MF1, a very high accumulation rate was determined. Large time gaps occur above MF2 and MF1, indicating that most of the record of the last glaciation is missing in the standard sections at Basaharc, Mende, and Paks. Either large discontinuities or a very low accumulation rate occurred in all three type sections during the soil-forming periods. High-resolution studies of climatic proxies using this combined luminescence dating approach provide a reliable chronological framework for loess and loess derivatives of the last glacial cycle in Hungary, although a precise and complete chronostratigraphic reconstruction cannot be achieved from the incomplete records found at these sites.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aitken, M.J., (1985). Thermoluminescence Dating. Academic Press, London. Google Scholar
Aitken, M.J., (1992). Optical dating. Quaternary Science Reviews. 11, 127131.CrossRefGoogle Scholar
Aktas, A., Frechen, M., (1991). Mittel- bis Jungpleistozäne Sedimente der Hochterrassen in der nördlichen Iller-Lech-Platte. Universität zu KölnGeologisches Institut, Sonderveröffentlichungen, p. 1941.Google Scholar
Boenigk, W., Frechen, M., (1994). Lumineszenz-Datierungen an kolluvialen Sedimenten des Elsbachtales: erste Ergebnisse. Archäologie im Rheinland. 1994, 177179.Google Scholar
Borsy, Z., Fèszerfalvi, J., Szabó, P.P., (1979). Thermoluminescence dating of several layers of the loess sequence at Paks and Mende (Hungary). Acta Geologica Academiae Scientiarium Hungaricae. 22, 451459.Google Scholar
Bøtter-Jensen, L., Ditlefsen, C., Mejdahl, V., (1991). Combined OSL (infrared) and TL studies on feldspars. Nuclear Tracks and Radiation Measurements. 18, 257263.Google Scholar
Bronger, A., Heinkele, T., (1989). Paleosol sequences as witnesses of Pleistocene climatic history. Catena Supplements. 16, 163186.Google Scholar
Bronger, A., Pant, R.K., Singhvi, A.K., (1987). Micromorphology, mineralogy, genesis and dating of loess-paleosol-sequences and their application to Pleistocene chronostratigraphy and paleoclimate: A comparison between southeast Central Europe and the Kashmir Valley/Central Asia. Aspects of Loess Research. China Ocean Press, Beijing, p. 121129.Google Scholar
Bulla, B., (1933). Morphological studies on the loess area of Hungary. Földrajzi Közlemények. 7–8, 169201.Google Scholar
Butrym, J., Maruszczak, H., (1984). Thermoluminescence chronology of younger and older loesses. Pécsi, M., Lithology and Stratigraphy of Loess and Paleosols. Hungarian Academy of Sciences, Budapest, 195199.Google Scholar
Debenham, N.C., (1985). Use of UV emissions in TL dating of sediments. Nuclear Tracks and Radiation Measurements. 10, 717724.Google Scholar
Dodonov, A.E., (1991). Loess of Central Asia. Geojournal. 24.2, 185194.Google Scholar
Frechen, M., (1991). Thermolumineszenz-Datierungen an Lössen des Mittelrheinge biets. Universität zu KölnGeologisches InstitutSonderveröffentlichungen, Köln, p. 1137.Google Scholar
Frechen, M., (1992). Systematic thermoluminescence dating of two loess profiles from the Middle Rhine area (F. R. G.). Quaternary Science Reviews. 11, 93101.Google Scholar
Frechen, M., (1994). Thermolumineszenz-Datierungen an Lössen des Tönchesberges aus der Osteifel. Eiszeitalter und Gegenwart. 44, 7993.Google Scholar
Frechen, M., Boenigk, W., Weidenfeller, M., (1995). Chronostratigraphie des “Eiszeitlichen Lößprofils” in Koblenz-Metternich. Mainzer Geowissenschaftliche Mitteilungen. 24, 155180.Google Scholar
Frechen, M., Brückner, H., Radtke, U., (1992). A comparison of different TL-techniques on loess samples from Rheindahlen (F.R.G.). Quaternary Science Reviews. 11, 109113.Google Scholar
Frechen, M., Preusser, F., (1996). Kombinierte Lumineszenz-Datierungen am Beispiel des Lößprofils Mainz-Weisenau. Frankfurter Geographische Mitteilungen. D20, 5366.Google Scholar
Frechen, M., Schweitzer, U., Zander, A., (1996). Improvements in sample preparation for the fine grain technique. Ancient TL. 14, 1517.Google Scholar
Frechen, M., Zhou, L.-P., (1995). Luminescence measurements of 780 ka old loess samples from China. University of Sussex, Brighton. Google Scholar
Gábori, M., Gábori, V., (1958). Etudes archaéologiques et stratigraphique dans le stations de loess paléolithique de Hongrie. Acta Archaeologica Hungarica. 8, 117.Google Scholar
Geyh, M.A., (1991). Determination of absolute dates for terrestrial materials (Last Interglacial to the Holocene)—An appeal for careful interpretation. Frenzel, B., Klimageschichtliche Probleme der letzten 130.000 Jahre. Gustav Fischer Verlag, New York, 251265.Google Scholar
Juvigné, E., Horváth, E., Gábris, G., (1991). La Téphra de Bag: une retombée volcanique à large dispersion dans le loess pléistocène d'Europe centrale. Eiszeitalter und Gegenwart. 41, 107118.Google Scholar
Kriván, P., (1955). A közép-eurótai pleisztocén éghajlati tagolódása és a paksi alapszelvény. (The climatological subdivision of the Pleistocene of Middle Europe and the key section at Paks). Magyar Álami Földtani Intézet Évkönyve. 43.3, 365400.Google Scholar
Kukla, G.J., (1977). Pleistocene Land-Sea Correlations I. Europe. Earth Science Reviews. 13, 307374.CrossRefGoogle Scholar
Márton, P., (1979). Paleomagnetism of the Paks brickyard exposures. Acta Geologica. 22.1–4, 443449.Google Scholar
Mejdahl, V., (1988). Long term stability of the TL signal in alkali feldspars. Quaternary Science Reviews. 7, 357360.Google Scholar
Mejdahl, V., (1989). How far back: Life times estimated from studies of feldspars of infinite ages. Aitken, M., Long & Short Range Limits in Luminescence Dating. Research Laboratory for Archaeology & the History of Art, Oxford. Google Scholar
Musson, F., Wintle, A.G., (1994). Luminescence dating of the loess profile at Dolni Vestonice, Czech Republic. Quaternary Geochronology (Quaternary Science Reviews). 13, 411416.Google Scholar
Oches, E.A., McCoy, W.D., (1995). Aminostratigraphic evaluation of conflicting age estimates for the “Young Loess” of Hungary. Quaternary Research. 44, 160170.CrossRefGoogle Scholar
Pécsi, M., (1965). Zur Fragen der Lösse und lössartigen Sedimente im Karpatenbecken und ihrer lithostratigraphischen Einteilung. Földrajzi Közlemények. 13, 305323.Google Scholar
Pécsi, M., (1975). A magyarországi löszszelvények litosztratgráfiai tagolása (Lithostratigraphical subdivision of the Hungarian loess sections). Földrajzi Közlemények (Geographical Bulletin). 23, 217230.Google Scholar
Pécsi, M., (1979). Lithostratigraphical subdivision of the loess profiles at Paks. Acta Geologica Hungaria. 22, 409418.Google Scholar
Pécsi, M., (1986). Stratigraphical subdivision of Hungarian Young and Old loess. Marusczcak, H., Problems of the Stratigraphy and Paleogeography of Loesses. Annales Universitatis Mariae Curie-Sklodowska Lublin, 6786.Google Scholar
Pécsi, M., (1990). Loess is not just the accumulation of dust. Quaternary International. 7/8, 121.CrossRefGoogle Scholar
Pécsi, M., (1991). Problems of loess chronology. GeoJournal. 24.2, 143150.Google Scholar
Pécsi, M., (1995). The role of principles and methods in loess-paleosol investigations. GeoJournal. 36.2/3, 117131.CrossRefGoogle Scholar
Pécsi, M., Hahn, G., (1987). Paleosol stratotypes in the Upper Pleistocene loess at Basaharc, Hungary. Catena Supplement. 9, 95102.Google Scholar
Pécsi, M., Pevzner, M.A., (1974). Paleomagnetic measurements in the loess-sequences at Paks and Dunaföldvar, Hungary. Földrajzi Közlemények. 22.3, 215219.Google Scholar
Pécsi, M., Richter, G., (1996). Löss: Herkunft–Gliederung–Landschaften. Zeitschrift für Geomorphologie. Neue Folge Supplementband. 98. Google Scholar
Pye, K., (1987). Aeolian Dust and Dust Deposit. Academic Press, London. Google Scholar
Ringer, A., Dobosi, V.T., Vörös, I., Krolopp, E., Szabó, J., Schweitzer, F., (1983). Upper Paleolithic settlement in Pilismarót-Pálrét. Acta Archaeology. 35, 287311.Google Scholar
Tauxe, L., Herbert, T., Shackleton, N.J., Kok, Y.S., (1996). Astronomical calibration of the Matuyama-Brunhes boundary: Consequences for magnetic remanence acquisition in marine carbonates and the Asian loess sequences. Earth and Planetary Science Letters. 140, 133146.CrossRefGoogle Scholar
Wintle, A.G., (1985). Stability of the TL signal in fine grains from loess. Nuclear Tracks and Radiation Measurements. 10, 725730.Google Scholar
Wintle, A.G., (1987). Thermoluminescence of loess. Catena Supplement. 9, 103115.Google Scholar
Wintle, A.G., (1987). Thermoluminescence dating of loess at Rocourt, Belgium. Geologie en Mijnbouw. 66, 3542.Google Scholar
Wintle, A.G., (1990). A review of current research on TL dating of loess. Quaternary Science Reviews. 9, 385397.Google Scholar
Wintle, A.G., (1994). Infrared-stimulated luminescence dating of sediments. Radiation Measurements. 23, 607612.Google Scholar
Wintle, A.G., Packman, S.C., (1988). Thermoluminescence ages for three sections in Hungary. Quaternary Science Reviews. 7, 315320.Google Scholar
Zander, A., Teborg, C., Frechen, M., (1995). Luminescence dating of Upper Pleistocene loess from Czech Republic and Hungary. Terra Nostra, Schriften der Alfred-Wegener-Stiftung. 1/95, 84.Google Scholar
Zöller, L., Oches, E.A., McCoy, W.D., (1994). Towards a revised chronostratigraphy of loess in Austria with respect to key sections in the Czech Republic and in Hungary. Quaternary Geochronology (Quaternary Science Reviews). 13, 465472.CrossRefGoogle Scholar
Zöller, L., Wagner, G.A., (1990). Thermoluminescence dating of loess—recent developments. Quaternary International. 7/8, 119128.Google Scholar