Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-14T07:29:29.236Z Has data issue: false hasContentIssue false

Geochemical characterization, correlation, and optical dating of tephra in alluvial sequences of central western Argentina

Published online by Cambridge University Press:  20 January 2017

Phillip S. Toms*
Affiliation:
Department of Geography, Royal Holloway, University of London, Surrey TW20 0EX, UK
Matthew King
Affiliation:
Department of Geography, Royal Holloway, University of London, Surrey TW20 0EX, UK
Marcelo A. Zárate
Affiliation:
CONICET–Universidad Nacional de la Pampa, 6300 Santa Rosa, Argentina
Rob A. Kemp
Affiliation:
Department of Geography, Royal Holloway, University of London, Surrey TW20 0EX, UK
Franklin F. Foit Jr.
Affiliation:
Geology Department, Washington State University, Pullman, WA 99164-6420, USA
*
*Corresponding author. Fax: +44-0-1242-543283. E-mail address:[email protected](P.S. Toms).

Abstract

The synthesis of paleoclimatic archives provided by loess and alluvial sequences of central Argentina has been hindered by the lack of a cohesive lithostratigraphic framework extending across the Chaco–Pampean plains and catchments of the Rios Desaguadero, Colorado, and Negro. This condition originates in part from the dearth of absolute chronological controls. The occurrence of discrete tephra layers across this region may provide an opportunity to address this deficiency if a tephrochronological framework can be established. The potential of such a project is assessed within the context of a pilot study constrained within alluvial sequences of central western Argentina proximal to potential source vents in the Southern Volcanic Zone. The intersite discrimination and correlation of tephra layers on a geochemical basis is examined, with indirect chronological control for the eruption of each generated by optical dating. Alluvial sediments on either side of each of five tephra units at a type site were dated using the optically stimulated luminescence of fine-silt-sized quartz, thus providing an age control on each tephra (ca. 24,000, 30,000, 32,000, 39,000, and 48,000 yr). The geochemical composition of each tephra was derived. Using these data, tephra layers at other sites in the study area were geochemically analyzed and in instances of statistical concordance in major oxide structure, correlated to the type site and therefore ascribed ages. This methodology identified a further sixth volcanic event between ca. 24,000 and 30,000 yr not registered by type-site tephras. The extension of this initial tephrochronological framework beyond the alluvial sequences of central western Argentina is encouraged by the occurrence of geochemically distinct tephra verified and dated in this study.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

1 Present address: Geochronology Laboratories, School of Environment, University of Gloucestershire Swindon Road, Cheltenham, Gloucestershire, GL50 4AZ, UK.

References

Adamiec, G., Aitken, M.J., (1998). Dose rate conversion factors: new data. Ancient TL 16, 3750.Google Scholar
Aitken, M.J., (1985). Thermoluminescence Dating. Academic Press, London.Google Scholar
Auer, V., (1974). The isorhythmicity subsequent to the Fuego–Patagonian and Fenoscandian ocean level transgressions and regressions of the last glaciation. Annales Academia Scientiarum Fennicae Series A III 115, 1188.Google Scholar
Begét, J.E., Keskinen, M.J., Severin, K.P., (1997). Tephrochronologic constraints on the Late Pleistocene history of the southern margin of the Cordilleran Ice Sheet, western Washington. Quaternary Research 47, 140146.CrossRefGoogle Scholar
Benson, L.V., Smoot, J.P., Michaele, K., Sarna-Wojcicki, A., Burdett, J.W., (1997). Radiocarbon ages and environments of deposition of the Wono and Trego Hot Springs tephra layers in the Pyramid Lake Subbasin, Nevada. Quaternary Research 47, 251260.CrossRefGoogle Scholar
Berger, G.W., Huntley, D.J., (1983). Dating volcanic ash by thermoluminescence. PACT 9, 581592.Google Scholar
Berger, G.W., Huntley, D.J., (1994). Tests for optically stimulated luminescence from tephra glass. Quaternary Science Reviews (Quaternary Geochronology) 13, 509512.CrossRefGoogle Scholar
Berger, G.W., Mulhern, P.J., Huntley, D.J., (1980). Isolation of silt-sized quartz from sediments. Ancient TL 11, 147152.Google Scholar
Berger, G.W., Neill, P.A., (1999). Photon-stimulated-luminescence (PSL) dating tests of glass-rich volcanic ash. Abstracts: LED99, 9th International Conference on Luminescence and Electron Spin Resonance Dating. Rome 138.Google Scholar
Blasi, A., Zárate, M., Kemp, R., (2001). Sedimentación y pedogénesis cuaternaria en el noreste de la pampa bonaerense: la localidad Gorina como caso de estudio. Revista Argentina de Sedimentologı́a 8, 1 7792.Google Scholar
Bonadonna, F.P., Leone, G., Zanchetta, G., (1995). Composición isotópica de los fósiles de gasterópodos continentales de la provincia de Buenos Aires. Indicaciones paleoclimáticas. Alberdi, M.T., Leone, G., Tonni, E.P., Un ensayo de correlación con el Mediterráneo occidental. Evolución biológica y climática de la región pampeana durante los últimos cinco millones de años Monografı́as del Museo Nacional de Ciencias Naturales, Madrid.77104.Google Scholar
Bonde, A., Murray, A.S., Friedrich, W.L., (2001). Santorini: Luminescence dating of a volcanic province using quartz?. Quaternary Science Reviews (Quaternary Geochronology) 20, 789793.CrossRefGoogle Scholar
Borchardt, G.A., Aruscavage, P.J., Millard, H.T. Jr., (1972). Correlation of Bishop Ash, a Pleistocene marker bed, using instrumental neutron activation analysis. Journal of Sedimentary Petrology 42, 301306.Google Scholar
Bøtter-Jensen, L., Mejdahl, V., Murray, A.S., (1999). New light on OSL. Quaternary Science Reviews (Quaternary Geochronology) 18, 303310.CrossRefGoogle Scholar
Busacca, A.J., Nelstead, K.T., McDonald, E.V., Purser, M.D., (1992). Correlation of distal tephra layers in loess in the Channelled Scabland and Palouse of Washington State. Quaternary Research 37, 281303.CrossRefGoogle Scholar
Carey, S.N., Sigurdsson, H., (1978). Deep-sea evidence for distribution of tephra from the mixed magma eruption of Soufriere on St. Vincent, 1902: Ash turbidites and airfall. Geology 6, 271274.2.0.CO;2>CrossRefGoogle Scholar
Carr, M.J., Walker, J.A., (1987). Intra-eruption changes in composition of some mafic to intermediate tephras from Central America. Journal of Volcanology and Geothermal Research 33, 147159.CrossRefGoogle Scholar
Clapperton, C., (1993). Quaternary geology and geomorphology of South America. Elsevier, Amsterdam.779.Google Scholar
D'Antoni, H., (1983). Pollen analysis of Gruta del Indio. Quaternary of South America and Antarctic Peninsula 1, 83104.Google Scholar
Davies, S.M., Branch, N.P., Lowe, J.J., Turney, C.S.M., (2002). Towards a European tephrochronological framework for Termination I and the early Holocene. Philosophical Transaction of the Royal Society of London Series A 360, 767802.CrossRefGoogle ScholarPubMed
Davies, S.M., Turney, C.S.M., Lowe, J., (2001). Identification and significance of a visible, basalt-rich Vedde Ash layer in a Late-glacial sequence on the Isle of Skye, Inner Hebrides, Scotland. Journal of Quaternary Science 16, 99104.CrossRefGoogle Scholar
Dugmore, A.J., Newton, A.J., Sugden, D.E., (1992). Geochemical stability of fine-grained silicic Holocene tephra in Iceland and Scotland. Journal of Quaternary Science 7, 173183.CrossRefGoogle Scholar
Fleming, S.J., (1973). The pre-dose technique: a new thermoluminescence dating method. Archaeometry 15, 1330.CrossRefGoogle Scholar
Fisher, R.V., Schminke, H.U., (1984). Pyroclastic Rocks. Springer-Verlag, New York.CrossRefGoogle Scholar
Foit, F.F. Jr., Mehringer, P.J., Sheppard, J.C., (1993). Age, Distribution and stratigraphy of Glacier Peak tephra in eastern Washington and western Montana, United States. Canadian Journal of Earth Sciences 30, 535552.CrossRefGoogle Scholar
González Bonorino, F., (1965). Mineralogı́a de las fracciones arcilla y limo del Pampeano en el área de la ciudad de Buenos Aires y su significado estratigráfico y sedimentológico. Asociación Geológica Argentina Revista 20, 67148.Google Scholar
Green, J.R., Margerison, D., (1978). Statistical Treatment of Experimental Data. Elsevier Scientific, New York.Google Scholar
Gronvold, K., Oskarsson, N., Johnsen, S.J., Clausen, H.B., Hammer, C.U., Bond, G., Bard, E., (1995). Ash layers from Iceland in the Greenland GRIP ice core correlated with oceanic and land based sediments. Earth and Planetary Science Letters 54, 238246.Google Scholar
Guerstein, G.R., (1993). Origen y Significado Geológico de la Asociación Piroclástica Pumı́cea.. Pleistoceno de la Provinica de Mendoza entre los 33 30 y 34 40 L.S., tesis doctoral. Museo de la Plata.Google Scholar
Hallett, D.J., Mathewes, R.W., Foit, F.F. Jr., (2001). Mid-Holocene Glacier Peak and Mount St. Helens We tephra layers detected in lake sediments from southern British Columbia using high-resolution techniques. Quaternary Research 55, 284292.CrossRefGoogle Scholar
Heusser, C.J., (1991). Biogeographic evidence for late Pleistocene palaeoclimate of Chile. Bamberger Geographische Schriften 11, 257270.Google Scholar
Hildreth, W., Drake, R., (1992). Volcán Quizapu, Chilean Andes. Bulletin of Volcanology 54, 93125.CrossRefGoogle Scholar
Hildreth, W., Grunder, A.L., Drake, R.E., (1984). The Loma Seca Tuff and the Calabozos Caldera: a major ash flow and caldera complex in the Southern Andes of Central Chile. Petrochemistry and age of rhyolitic pyroclastic flows which occur along the drainage valleys of the Rı́o Maipo and Rı́o Cahapoal (Chile) and the Rı́o Yaucha and Rı́o Papagayos (Argentina). Revista Geológica de Chile vol. 23, 3952.Google Scholar
Hooper, P.R., Herrick, I.W., Laskowski, E.R., Knowles, C.R., (1980). Composition of the Mt. St. Helens ashfall in the Moscow–Pullman Area on 18 May 1980. Science 209, 11251126.CrossRefGoogle Scholar
Hütt, G., Jaek, I., Tchonka, J., (1988). Optical dating: K-feldspars optical response stimulation spectra. Quaternary Science Reviews 7, 381386.CrossRefGoogle Scholar
Inbar, M., Risso, C., (2001). A morphological and morphometric analysis of a high density cinder cone volcanic field-Payun Matru, southe central Andes, Argentina. Zeitschrift für Geomorphologie, None Folse 45, 3 321343.CrossRefGoogle Scholar
Imbellone, P.A., Camilión, C., (1988). Characterization of a buried tephra layer in soils of Argentina. Pedologie 38, 155171.Google Scholar
Iriondo, M., (1993). Geomorphology and Late Quaternary of the Chaco (South-America). Geomorphology 7, 289303.CrossRefGoogle Scholar
Iriondo, M., (1997). Models of deposition of loess and loessoids in the upper Quaternary of South America. Journal of South American Earth Sciences 10, 7179.CrossRefGoogle Scholar
Iriondo, M., (1999). The origin of silt particles in the loess question. Quaternary International 62, 39.CrossRefGoogle Scholar
Iriondo, M., (2000). Patagonian dust in Antarctica. Quaternary International 68, 8386.CrossRefGoogle Scholar
Jackson, M.L., Sayin, M., Clayton, R.N., (1976). Hexafluorosilicic acid regent modification for quartz isolation. Soil Science Society of America Journal 40, 958960.CrossRefGoogle Scholar
Kemp, R.A., Zárate, M.A., (2000). Pliocene pedosedimentary cycles in the southern Pampas, Argentina. Sedimentology 47, 314.CrossRefGoogle Scholar
King, M., Busacca, A.J., Foit, F.F. Jr., Kemp, R.A., (2001). Identification of disseminated Trego Hot Springs tephra in the Palouse, Washington State. Quaternary Research 56, 165169.CrossRefGoogle Scholar
Kittl, E., (1933). Estudio sobre los fenómenos volcánicos y material caido durante la erupción del grupo del “Descabezado” en el mes be abril de 1932. Anal Museo Nacional Historica Naturale 37, 321364.Google Scholar
Kraglievich, J.L., (1952). El perfil geológico de Chapadmalal y Miramar. Provincia de Buenos Aires. Revista Museo municipal Ciencias Naturales y Tradicionalista de Mar del Plata 1 837.Google Scholar
Kröhling, D.M., (1999). Upper Quaternary geology of the lower Carcaraná Basin, North Pampa, Argentina. Quaternary International 57/58, 135148.CrossRefGoogle Scholar
Kukla, G., (1989). Long continental records of climate—an introduction. Palaeogeography, Palaeoclimatology, Palaeoecology 72, 19.CrossRefGoogle Scholar
Kvamme, T., Mangerud, J., Furnes, H., Ruddiman, W.F., (1989). Geochemistry of Pleistocene ash zones in cores from the North Atlantic. Norsk Geologisk Tidsskrift 69, 251272.Google Scholar
Larsson, W., (1937). Vulkanische Asche vom Ausbruch des Chile-nischen Vulkans Quizapu (1932) in Argentina gesammelt. Bulletin of the Geological Institution of the University of Upsala 26, 2752.Google Scholar
Li, S.-H., Yin, G.-M., (2001). Luminescence dating of young volcanic activity in China. Quaternary Science Reviews (Quaternary Geochronology) 20, 865868.CrossRefGoogle Scholar
Madsen, D.B., Sarna-Wojcicki, A.M., Thompson, R.S., (2002). A late Pleistocene tephra layer in the southern Great Basin and Colorado plateau derived from Mono Craters, California. Quaternary Research 57, 382390.CrossRefGoogle Scholar
Markgraf, V., (1983). Late and postglacial vegetational and paleoclimatic changes in subantarctic, temperate and arid environments in Argentina. Palynology 7, 4370.CrossRefGoogle Scholar
Morrás, H., (1994). Descripción y caracterización análitica de depósitos piroclásticos en dos perfiles de suelo de la región chaqueña. V Reunión Argentina de Sedimentologı́a Actas, Tucumán.165170.Google Scholar
Muhs, D., Zárate, M., (2001). Late Quaternary eolian records of the Americas and their palaeoclimatic significance. Markgraf, V., Interhemispheric Climate Linkages Academic Press, New York.183216.CrossRefGoogle Scholar
Murray, A.S., Wintle, A.G., (2000). Luminescence dating of quartz using an improved single-aliquot regenerative-dose protocol. Radiation Measurements 32, 5773.CrossRefGoogle Scholar
Nabel, P.E., Morrás, H.J.M., Petersen, N., Zech, W., (1999). Correlation of magnetic and lithologic features of soils and Quaternary sediments from the undulating Pampa, Argentina. Journal of South American Earth Sciences 12, 311323.CrossRefGoogle Scholar
Naranjo, J.A., Haller, M.J., Ostera, H.A., Pesce, A.H., Sruoga, P., (1999). Geologı́a y peligros del complejo volcánico Planchón-Peteroa, Andes del sur (35, 15 S), región del Maule, Chile—provincia de Mendoza, Argentina, Boletı́n vol. 52, Servicio Nacional de Geologı́a y Minerı́a, Santiago.Google Scholar
Polanski, J., (1963). Estratigrafı́a, neotectónica y geomorfologı́a del Pleistoceno pedemontano entre los rı́os Diamante y Mendoza. Revista de la Asociación Geológica Argentina XVII 3–4, 127349.Google Scholar
Prescott, J.R., Hutton, J.T., (1994). Cosmic ray contributions to dose rates for luminescence and ESR dating: large depths and long-term time variations. Radiation Measurements 23, 497500.CrossRefGoogle Scholar
Prieto, A.R., (1996). Late Quaternary vegetational and climatic changes in the Pampa grassland of Argentina. Quaternary Research 45, 7388.CrossRefGoogle Scholar
Prieto, A.R., (2000). Vegetational history of the Lateglacial-Holocene transition in the grassland of eastern Argentina. Palaeogeography, Palaeoclimatology, Palaeoecology 157, 167188.CrossRefGoogle Scholar
Prohaska, F., (1976). The climate of Argentina, Paraguay and Uruguay. Schwerdtfeger, W., World Survey of Climatology 12. Climates of Central and South America Elsevier, Amsterdam.13112.Google Scholar
Quatrocchio, M., Borromei, A., (1998). Paleovegetational and paleoclimatic changes during the Late Quaternary in southwestern Buenos Aires province and southern Tierra del Fuego (Argentina). Palynology 22, 6782.CrossRefGoogle Scholar
Ramos, V., Almeida, A., (2000). Tectonic evolution of the Andes. Cordani, U.G., Milani, E.J., Thomaz Filho, A., Campos, D.A., Tectonic Evolution of South America 635685.Google Scholar
Ramos, V., Nullo, F.C., (1993). El volcanismo de arco cenozoico. Ramos, V.A., XII Congreso Geológico Argentino y II Congreso de Exploración de Hidrocarburos (Mendoza, 1993). Geologı́a y Recursos Naturales de Mendoza, relatorio vol. 1 (12), 149160.Google Scholar
Rieck, H.J., Sarna-Wojcicki, A.M., Mayer, C.E., Adam, D.P., (1992). Magnetostratigraphy and tephrochronology of an Upper Pliocene to Holocene record in lake sediments at Tule Lake, Northern California. Geological Society of America Bulletin 104, 409428.2.3.CO;2>CrossRefGoogle Scholar
Sarna-Wojcicki, A.M., Davis, J.O., (1991). Quaternary tephrochronology. Morrison, R.B., The Geology of North America: Quaternary Nonglacial Geology; Conterminous United States Vol. k-2, Geological Society of America, Denver, CO.93115.Google Scholar
Smith, J., Vance, D., Kemp, R.A., Archer, C., Toms, P., King, M., Zárate, M., (2003). Isotopic constraints on the source of Argentinian loess—with implications for atmospheric circulation and the provenance of Antarctic dust during recent glacial maxima. Earth and Planetary Science Letters 212, 181196.CrossRefGoogle Scholar
Stern, C., (1990). Tephrochronology of southernmost Patagonia. National Geographic Research 6, 110126.Google Scholar
Stern, C., (1992). Tefrocronologı́a de Magallanes: nuevos datos e implicaciones. Anales Instituto de la Patagonia 21, 129141.Google Scholar
Stern, C., Amini, H., Charrier, R., Godoy, E., Herve, F., Varela, J., (1984). Petrochemistry and age of rhyolitic pyroclastic flows which occur along the drainage valleys of the Rı́o Maipo and Rı́o Cahapoal (Chile) and the Rı́o Yaucha and Rı́o Papagayos (Argentina). Revista Geológica de Chile 23, 3952.Google Scholar
Stokes, S., Lowe, D.J., (1988). Discriminant Function analysis of Late Quaternary tephras from five volcanoes in New Zealand using glass shard major element chemistry. Quaternary Research 30, 270283.CrossRefGoogle Scholar
Teruggi, M.E., (1957). The nature and origin of Argentine loess. Journal of Sedimentary Petrology 217, 322332.Google Scholar
Teruggi, M.E., Imbellone, P.A., (1987). Paleosuelos loéssicos superpuestos en el Pleistoceno Superior–Holoceno de la región de la Plata, Provincı́a de Buenos Aires, Argentina. Ciencia del Suelo 5, 176188.Google Scholar
Turney, C.S.M., Lowe, J.J., Wastegård, S., Cooper, R., Roberts, S.J., (2001). The development of a tephrochronological framework in the last glacial—Holocene transition in NW Europe. Juvignè, E., Raynal, J.-P., Tephras: Chronology, Archaeology, Dossiers de l'Archéo-Logis no. 1, Haute-Loire 101109.Google Scholar
Wintle, A.G., (1973). Anomalous fading of thermoluminescence in mineral samples. Nature 245, 143144.CrossRefGoogle Scholar
Zárate, M.A., (2000). The Pleistocene/Holocene transition in the eastern Andean piedmont of Mendoza, Argentina. Current Research in the Pleistocene 17, 149151.Google Scholar
Zárate, M., (2002). Geologı́a y estratigrafı́a del Pleistoceno tardı́o-Holoceno en el piedemonte de Tupungato-Tunuyán, Mendoza, Argentina. XV Congreso Geológico Argentino, 24–26 de abril de 2002, Calafate, Santa Cruz ACTAS, Argentina.615620.Google Scholar
Zárate, M., Blasi, A., (1991). Late Pleistocene–Holocene eolian deposits of the southern Buenos Aires province, Argentina. GeoJournal 24, 211220.CrossRefGoogle Scholar
Zárate, M.A., Kemp, R.A., Blasi, A.M., (2002). Identification and differentiation of Pleistocene paleosols in the northern pampas of Buenos Aires, Argentina. Journal of South American Earth Sciences 15, 303313.CrossRefGoogle Scholar
Zimmerman, D.W., (1971). Thermoluminescent dating using fine grains from pottery. Archaeometry 13, 2952.CrossRefGoogle Scholar