Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-27T12:55:36.712Z Has data issue: false hasContentIssue false

The Full-Glacial Forests of Central and Southeastern Europe

Published online by Cambridge University Press:  20 January 2017

Katherine J. Willis
Affiliation:
School of Geography, University of Oxford, Mansfield Road, Oxford, OX1 3TB, United Kingdom
Edina Rudner
Affiliation:
Department of Mineralogy and Geology, Kossuth Lajos University, P.O. Box 4, Debrecen, H-4010, Hungary
Pal Sümegi
Affiliation:
Department of Mineralogy and Geology, Kossuth Lajos University, P.O. Box 4, Debrecen, H-4010, Hungary

Abstract

The presence of trees in central and southern Europe during the last full-glaciation has long been a matter of debate. A low but persistent presence of fossil tree pollen in central and southern European full-glacial paleoecological sequences has been interpreted either as representing long-distance pollen transport from southerly refuges or as representing in situ refugial populations. Here we present macroscopic charcoal results from 31 sequences located throughout Hungary that provide unequivocal evidence for the presence of at least seven different tree types between approximately 32,500 and 16,500 14C yr B.P. This evidence is presented in conjunction with molluscan and pollen analyses to indicate that during the last full-glaciation, trees grew as far north as Hungary, probably in microenvironmentally favorable sites. These areas provided an important cold-stage refugium for the European flora and fauna.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bell, M., Walker, M.J.C., (1992). Late Quaternary Environmental Change.. Longman Group, .Google Scholar
Bennett, K.D., Tzedakis, P.C., Willis, K.J., (1991). Quaternary refugia of north European trees.. Journal of Biogeography 18, 103115.CrossRefGoogle Scholar
Betancourt, J.L., van Devender, T.R., Martin, P.S., (1990). Synthesis and prospectus.. Betancourt, J.L., van Devender, T.R., Martin, P.S., Packrat Middens: The Last 40,000 Years of Biotic Change University of Arizona Press, Tucson.435447.Google Scholar
Birks, H.H., (1994). Plant macrofossils and the nunatak theory of pre-glacial survival.. Dissertationes Botanicæ 234, 129143.Google Scholar
Bond, G., Broecker, W.S., Johnsen, S., McManus, J., Labeyrie, L., Jouzel, J., Bonani, G., (1993). Correlations between climate records from the North Atlantic sediments and Greenland ice.. Nature 365, 143147.CrossRefGoogle Scholar
Clark, J.S., (1988). Particle motion and the theory of charcoal analysis: Source area, transport, deposition and sampling.. Quaternary Research 30, 6780.CrossRefGoogle Scholar
Culiberg, M., Sercelj, A., (1995). Anthracotomical and palynological research in the Paleolithic site Sandalja II (Istria, Croatia).. Razprave 4, slovenska akademija Znanosti Utmentnosit 36, 4749.Google Scholar
Denton, G.H., Hughes, T.J., (1971). The Last Great Ice Sheets.. Wiley, New York.Google Scholar
Dobosi, V., (1967). Új felsõ-paleolit telep zs Alfóldön.. Archeológiai Értesı́tõ 94, 184193.Google Scholar
Figueiral, I., (1995). Charcoal analysis and the history of Pinus pinaster (cluster pine) in Portugal.. Review of Paleobotany and Palynology 89, 441454.CrossRefGoogle Scholar
Fink, J., Kukla, G., (1977). Pleistocene climates in central Europe.. Quaternary Research 7, 363371.Google Scholar
Follieri, M., Magri, D., Sadori, L., (1988). 250,000-year pollen record from Valle di Castiglione (Roma).. Pollen et Spores 30, 329356.Google Scholar
Gábori-Csánk, V., (1960). A ságvári telep abszolút kormeghatározása.. Archeológiai Értesı́tõ 87, 125129.Google Scholar
Geyh, M.A., Schweitzer, F., Vértes, F., Vogel, I.C., (1969). Neue chronologische Angaben zur Würm-Vereisung in Ungarn.. Földrajzi Értesı́tõ 18, 518.Google Scholar
Hertelendi, E., Sümegi, P., Szöõr, G., (1992). Geochronologic and paleoclimatic characterization of Quaternary sediments in the Great Hungarian Plain.. Radiocarbon 34, 833839.CrossRefGoogle Scholar
Hicks, S., (1985). Modern pollen deposition records from Kuusamo, Finland. Seasonal and annual variation.. Grana 24, 167184.CrossRefGoogle Scholar
Hicks, S., (1994). Large and small scale distribution of pollen in the boreal zone.. PACT 33, 1726s.Google Scholar
Johnsen, S.J., Clausen, H.B., Dansgaard, W., Fuher, K., Gundestrup, N., Hammer, C.U., Iversen, P., Jouzel, J., Stauffer, B., Steffensen, J.P., (1992). Irregular glacial interstadials recorded in a new Greenland ice core.. Nature 359, 311313.CrossRefGoogle Scholar
Kerney, M.P., Cameron, A.C.D., Jungbluth, J.H., (1983). Die Landschnecken Nord Und Mitteleuropas..Google Scholar
Kordos, L., (1977). Changes in the Holocene climate of Hungary reflected by the “vole-thermometer” method.. Földrajzi Közlemények 25, 222289.Google Scholar
Kordos, L., (1987). Climatostratigraphy of Upper Pleistocene vertebrates and the conditions of loess formation in Hungary.. Geojournal 15, 163166.Google Scholar
Korotaev, A.A., (1987). Effect of soil temperature and moisture content on root growth in coniferous cultures.. Soviet Forest Science 1987, 5261.Google Scholar
Krolopp, E., (1977). Absolute chronological data of the Quaternary sediments in Hungary.. Földrajzi Közlemények 26, 228232.Google Scholar
Krolopp, E., Sümegi, P., (1995). Paleoecological reconstruction of the Late Pleistocene, based on loess malacofauna in Hungary.. Geojournal 36, 213222.CrossRefGoogle Scholar
Krolopp, E., Sümegi, P., Kuti, P., Hertelendi, E., Kordos, L., (1996). Paleoecological reconstruction of the Szeged-Öthalom loess-area.. Földtani Közlöny 125, 309361.Google Scholar
Kutzbach, J.E., Guetter, P.J., Behling, P.J., Sehling, R., (1993). Simulated climate changes: Results of the COHMAP climate-model experiments.. Wright, H.E. Jr., Kutzbach, J.E., Webb, T. III, Ruddimann, W.F., Street-Perrott, F.A., Bartlein, P.J., Global Climates since the last Glacial Maximum University of Minnesota Press, Minneapolis.2493.Google Scholar
Kutzbach, J.F., Guetter, P.J., (1986). The influence of changing orbital parameters and surface boundary conditions on climate simulations for the past 18,000 years.. Journal of Atmospheric Science 43, 17261759.Google Scholar
Laj, C., Mazaud, A., Duplessy, J.C., (1996). Geomagnetic intensity and 14C abundance in the atmosphere and ocean during the past 50 kyr.. Geophysical Research Letters 23, 20452048.CrossRefGoogle Scholar
Lozek, V., (1964). Quartärmollusken der Tschechoslowakei.. Rozpravy Ústredniko ústavu geologickeho 31, 1375.Google Scholar
Lozek, V., (1987). Mollusca analysis.. Berglund, B.E., Handbook of Holocene Paleoecology and Paleohydrology Wiley, London.729740.Google Scholar
Magri, D., (1989). Interpreting long-term exponential growth of plant populations in a 250,000-year pollen record from Valle di Castiglione (Roma).. New Phytologist 112, 123128.CrossRefGoogle Scholar
Magri, D., (1994). Late-Quaternary changes in plant biomass as recorded by pollen-stratigraphical data: A discussion of the problem at Valle di Castiglione, Italy.. Review of Paleobotany and Palynology 81, 313325.CrossRefGoogle Scholar
Marosi, S., Szilárd, J., (1974). Neuere Angabren über das Alter das Balatons.. Földrajzi Értesı́tõ 23, 333346.Google Scholar
Maruszczak, H., (1987). Problems of paleographic interpretation of ice-wedge casts in European loesses: SEM characterisation microfeatures on frost shattered quartz grains.. Pési, M., French, H.M., Loess and the Periglacial Phenomena Akademiai Kiado, Budapest.285302.Google Scholar
Marziani, G.P., Iannone, A., Patrignani, G., Schiattareggia, A., (1991). Reconstruction of the tree vegetation near a Bronze Age site in Northern Italy based on the analysis of charcoal fragments.. Review of Paleobotany and Palynology 70, 214246.Google Scholar
Maspero, A., (1996). Dati sulla vegetazione del periodo glaciale: Antracologia dei siti paleolitici del nord Italia.. II Quaternario 9, 591598.Google Scholar
Meijer, T., (1985). The pre-Weichselian non-marine molluscan fauna from Maastricht-Belvedere (southern Limburg of the Netherlands).. Mededelingen Rijks Gelogishe Dienst 39, 75103.Google Scholar
Nikolov, N., Helmisaari, H., (1992). Silvics of the circumpolar boreal forest tree species.. Shugart, H.H., Leemans, R., Bonan, G.B., A Systems Analysis of the Global Boreal Forest Cambridge University Press, Cambridge.1385.Google Scholar
Pastor, J., Mladenoff, D.J., (1992). The southern boreal-northern hardwood forest border.. Shugart, H.H., Leemans, R., Bonan, G.B., A Systems Analysis of the Global Boreal Forest Cambridge University Press, Cambridge.216240.CrossRefGoogle Scholar
Pécsi, M., (1961). The most important types of periglacial ground-frost phenomena in Hungary.. Földrajzi Közlemények 9, 124.Google Scholar
Pécsi, M., (1976). Lithostratigraphical subdivision of the loess sequences in Hungary.. Földrajzi Közlemények 23, 228239.Google Scholar
Pécsi, M., (1977). A hazai és az európai löszképzodmények paleogeográiai kutatása és összehasonlı́tása.. Geonómia és Bányászat 10, 183221.Google Scholar
Pécsi, M., (1993). Quaternary and Loess Research.. Akadémiai Kiadó, Budapest.Google Scholar
Pécsi, M., Schweitzer, F., (1991). Short and long-term terrestrial records of the Middle Danubian Basin.. Pécsi, M., Schweitzer, F., Quaternary Environment in Hungary Akadémiai Kiadó, Budapest.926.Google Scholar
Rudner, Z.E., (1994). Upper Pleistocene Vegetation Reconstruction in Hungary on the Basis of Anthracological Investigations.. Kossuth Lajos University, Debrecen.Google Scholar
Sander, P.M., Gee, C.T., (1990). Fossil charcoal: Techniques and applications.. Review of Paleobotany and Palynology 63, 269279.Google Scholar
Schweingruber, F.H., (1989). Tree Rings—Basics and Applications of Dendrochronology.. Kluwer Academic, Berlin.Google Scholar
Sparks, B.W., (1964). Non-marine mollusca and Quaternary ecology.. Journal of Animal Ecology 33, 8798.Google Scholar
Stoilov, K.G., (1984). The Loess Formation in Bulgaria.. Publishing House of the Bulgarian Academy of Sciences, Sofia.Google Scholar
Stuiver, M., Reimer, P.J., (1993). Extended 14C data base and revised CALIB 3.0 14C age calibration program.. Radiocarbon 35, 215230.CrossRefGoogle Scholar
Sümegi, P., (1989). Upper Pleistocene Evolution History of the Hajdúsáag (Hungary) Region, on the Basis of Stratigraphical, Paleontological, Sedimentological and Geochemical Investigations.. Kossuth Lajos University, Debrecen.Google Scholar
Székely, A., (1987). Nature and extent of periglacial sculpturing of relief in the Hungarian mountains.. Pécsi, M., French, H.M., Loess and Periglacial Phenomena Akadémiai Kiadó, Budapest.303311.Google Scholar
Tzedakis, P.C., (1993). Long-term tree populations in northwest Greece in response to Quaternary climatic cycles.. Nature 364, 437440.CrossRefGoogle Scholar
van Andel, T., (1998). Middle and Upper Paleolithic environments and the calibration of 14C dates beyond 10,000 B.P.. Antiquity 72, 2633.Google Scholar
Vernet, J.-L., Thiebault, S., (1987). An approach to the northwestern Mediterranean recent prehistoric vegetation and ecological implications.. Journal of Biogeography 14, 117127.CrossRefGoogle Scholar
Vértes, L., (1964). Das Jung paläolithikum von Arka in Nord-Ungarn.. Quartär 15/16, 132139.Google Scholar
Voelker, A.H.L., Sarnthein, M., Grootes, P.M., Erlenkeuser, H., Laj, C., Mazaud, A., Nadeau, M.-J., Schleicher, M., (1998). Correlation of marine 14C ages from the Nordic seas with the GISP2 isotope record: Implications for radiocarbon calibration beyond 25 ka B.P.. Radiocarbon 40, 119.Google Scholar
Vogel, I.C., Waterbolk, H.I., (1964). Groningen radiocarbon dates V.. Radiocarbon 6, 349369.Google Scholar
Whitlock, C., Millspaugh, S.H., (1996). Testing the assumptions of fire-history studies: An examination of modern charcoal accumulation in Yellowstone National Park, USA.. The Holocene 6, 715.Google Scholar
Willis, K.J., (1992). The late Quaternary vegetational history of northwest Greece. III. A comparative study of two contrasting sites.. New Phytologist 121, 139155.CrossRefGoogle Scholar
Willis, K.J., (1994). The vegetational history of the Balkans.. Quaternary Science Reviews 13, 769788.CrossRefGoogle Scholar
Willis, K.J., (1994). Altitudinal variation in the late Quaternary vegetational history of northwest Greece.. Historical Biology 9, 103116.CrossRefGoogle Scholar
Willis, K.J., (1997). The impact of early agriculture upon the Hungarian landscape.. Chapman, J., Dolukhanov, P., Landscapes in Flux—Central and Eastern Europe in Antiquity Oxbow Books, Oxford.193207.Google Scholar
Willis, K.J., Braun, M., Sümegi, P., Tóth, A., (1997). Does soil change cause vegetation change or vice versa? A temporal perspective from Hungary.. Ecology 78, 740750.CrossRefGoogle Scholar
Willis, K.J., Sümegi, P., Braun, M., Bennett, K.D., Tóth, A., (1998). Prehistoric land degradation in Hungary: Who, how and why.. Antiquity 72, 101113.Google Scholar
Willis, K.J., Sümegi, P., Braun, M., Tóth, A., (1995). The late Quaternary environmental history of Bàtorliget, N.E. Hungary.. Paleogeography, Paleoclimatology, Paleoecology 118, 2547.CrossRefGoogle Scholar
Woillard, G., (1979). Grand Pile peat bog: A continuous pollen record for the last 140,000 years.. Quaternary Research 9, 121.Google Scholar
Wright, H.E., (1967). A square rod piston sampler for lake sediments.. Journal of Sedimentary Petrology 37, 975976.Google Scholar
Zackrisson, O., Nilsson, M., Wardle, D., (1996). Key ecological function of charcoal from wildfire in the boreal forest.. Oikos 77, 1019.CrossRefGoogle Scholar