Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-27T16:47:08.324Z Has data issue: false hasContentIssue false

Frost Creep and Gelifluction Features: A Review

Published online by Cambridge University Press:  20 January 2017

James B. Benedict*
Affiliation:
Department of Anthropology, Colorado State University, Overland Road, Ward, Colorado 80481 USA

Abstract

Frost creep and gelifluction are the cold-climate representatives of mass-wasting processes that occur in a broad range of environments. Neither process requires permafrost, and frost creep can be inhibited by its presence at shallow depth. Acting in various combinations, frost creep and gelifluction produce distinctive lobate and terrace-like landforms, which are easy to recognize while fresh and active, but difficult to distinguish from mudflow lobes, earthslides, and similar deposits after they have been modified by other processes. Large frost creep and gelifluction features are currently active in many tundra environments that experience only deep seasonal freezing; thus they are not generally considered to be indicators of permafrost. Most radio-carbon-dated lobes and terraces, however, seem to have originated at times when permafrost was more widespread than it is today. This is true in the Colorado Front Range, where the formation of lobes and terraces appears to have been initiated by rapid melting of ice-enriched permafrost during the warming phases of frost-heave cycles that were centuries or millennia in duration. There is growing evidence that lobes and terraces developed in many parts of the world between about 3000 and 2500 BP; the climatic significance of their formation during this interval is open to several interpretations. Long-term average rates of frontal advance, calculated for deposits in Colorado, Australia, Greenland, Yukon Territory, Alaska, Scotland, and Norway, range from 0.6 to 3.5 mm per calendar year, significantly slower than maximum rates of movement measured on the surfaces of active lobes and terraces in comparable environments; the features are clearly not as effective at transporting debris as was previously supposed. Variations in past rates of downslope soil movement, estimated from close-interval dating of buried humus horizons or plant remains overrun by the advancing fronts of lobes and terraces, provide a sensitive record of climatic change. The dated humus layers are also suitable for detailed pollen analyses and soil chronosequence studies.

Type
Review Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Åkerman, J., (1973). Preliminära resultat från undersökningar av massrörelser vid Kapp Linné, Spetsbergen. Lunds Universitets Naturgeografiska Institution, Rapporter och Notiser 18, 113.Google Scholar
Andersson, J.G., (1906). Solifluction, a component of subaerial denudation. Journal of Geology 14, 91112.Google Scholar
Andrews, J.T., (1963). The analysis of frost-heave data collected by B. H. J. Haywood from Schefferville, Labrador-Ungava. Canadian Geographer 7, 163174.Google Scholar
Ball, D.F., Goodier, R., (1974). Ronas Hill, Shetland: A preliminary account of its ground pattern features resulting from the action of frost and wind. Goodier, R. The Natural Environment of Shetland The Nature Conservancy Council Edinburgh 89106.Google Scholar
Barr, D.J., Swanston, D.N., (1970). Measurement of creep in a shallow, slide-prone till soil. American Journal of Science 269, 467480.CrossRefGoogle Scholar
Benedict, J.B., (1966). Radiocarbon dates from a stone-banked terrace in the Colorado Rocky Mountains, U.S.A. Geografiska Annaler 48A, 2431.Google Scholar
Benedict, J.B., (1967). Recent glacial history of an alpine area in the Colorado Front Range, U.S.A. I. Establishing a lichen-growth curve. Journal of Glaciology 6, 817832.CrossRefGoogle Scholar
Benedict, J.B., (1969). Microfabric of patterned ground. Arctic and Alpine Research 1, 4548.Google Scholar
Benedict, J.B., (1970). Downslope soil movement in a Colorado alpine region: Rates, processes, and climatic significance. Arctic and Alpine Research 2, 165226.Google Scholar
Benedict, J.B., (1973). Chronology of cirque glaciation, Colorado Front Range. Quaternary Research 3, 585599.Google Scholar
Black, R.F., (1969). Climatically significant fossil periglacial phenomena in northcentral United States. Biuletyn Peryglacjalny 20, 225238.Google Scholar
Brockie, W.J., (1965). “Patterned ground”: Some problems of stone stripe development in Otago. Proceedings Fourth New Zealand Geography Conference 91104.Google Scholar
Brown, J., (1969). Soils of the Okpilak River region, Alaska. Péwé, T.L. The Periglacial Environment McGill-Queen's University Press Montreal 93128.Google Scholar
Brown, R.J.R., Péwé, T.L., (1973). Distribution of permafrost in North America and its relationship to the environment: A review, 1963–1973. Permafrost, Second International Conference, North American Contribution National Academy of Sciences Washington, D.C 71100.Google Scholar
Büdel, J., (1961). Die Abtragungsvorgänge auf Spitzbergen im Umkreis der Barentsinsel. Deutscher Geographentag Köln, Tagungsbericht und wissenschaftliche Abhandlungen Franz Steiner Verlag G.m.b.H Wiesbaden 337375.Google Scholar
Butzer, K.W., (1969). Environment and Archeology Aldine Chicago .Google Scholar
Caine, N., (1968a). The log-normal distribution and rates of soil movement: An example. Revue de Géomorphologie Dynamique 18, 17.Google Scholar
Caine, N., (1968b). The blockfields of north-eastern Tasmania. Australian National University, Department of Geography Publication G/6, 1127.Google Scholar
Costin, A.B., (1972). Carbon-14 dates from the Snowy Mountains area, southeastern Australia, and their interpretation. Quaternary Research 2, 579590.CrossRefGoogle Scholar
Costin, A.B., Thom, B.G., Wimbush, D.J., Stuiver, M., (1967). Nonsorted steps in the Mt. Kosciusko area, Australia. Geological Society of America Bulletin 78, 979992.CrossRefGoogle Scholar
Czeppe, Z., (1960a). Annual course and the morphological effect of the vertical frost movements of soil at Hornsund, Vestspitsbergen. Bulletin de l'Académie Polonaise des Sciences, Série des Science Géologique et Géographique 8, 145148.Google Scholar
Czeppe, Z., (1960b). Thermic differentiation of the active layer and its influence upon the frost heave in periglacial regions (Spitsbergen). Bulletin de l'Académie Polonaise des Sciences, Série des Science Géologique et Géographique 8, 149152.Google Scholar
Damon, P.E., Ferguson, C.W., Long, A., Wallick, E.I., (1974). Dendrochronologic calibration of the radiocarbon time scale. American Antiquity 39, 350366.Google Scholar
Denton, G.H., Karlén, W., (1973). Holocene climatic variations—their pattern and possible cause. Quaternary Research 3, 155205.Google Scholar
Drury, W.H. Jr., (1962). Patterned ground and vegetation on southern Bylot Island, Northwest Territories, Canada. Contributions from the Gray Herbarium, Harvard University 190, 1111.Google Scholar
Dutkiewicz, L., (1967). The distribution of periglacial phenomena in NW-Sörkapp, Spitsbergen. Biuletyn Peryglacjalny 16, 3783.Google Scholar
Eden, W.J., (1967). Buried soil profile under apron of an earth flow. Geological Society of America Bulletin 78, 11831184.Google Scholar
Everett, K.R., (1963). Instruments for measuring mass-wasting. Permafrost, International Conference, Proceedings National Academy of Sciences-National Research Council Washington, D.C 136139.Google Scholar
Everett, K.R., (1966). Slope movement and related phenomena. Wilimovsky, N.J., Wolfe, J.N. Environment of the Cape Thompson Region, Alaska U.S. Atomic Energy Commission, Division of Technical Information 175220.Google Scholar
Everett, K.R., (1967). Mass-wasting in the Tasersiaq area, West Greeland. Meddelelser om Grønland 165, 132.Google Scholar
Fahey, B.D., (1974). Seasonal frost heave and frost penetration measurements in the Indian Peaks region of the Colorado Front Range. Arctic and Alpine Research 6, 6470.Google Scholar
Fitzpatrick, E.A., (1956). An indurated soil horizon formed by permafrost. Journal of Soil Science 7, 247254.Google Scholar
Flint, R.F., (1971). Glacial and Quaternary Geology Wiley New York .Google Scholar
French, H.M., (1971). Slope asymmetry of the Beaufort Plain, northwest Banks Island, N.W.T., Canada. Canadian Journal of Earth Sciences 8, 717731.Google Scholar
French, H.M., (1974). Mass-wasting at Sachs Harbour, Banks Island, N.W.T., Canada. Arctic and Alpine Research 6, 7178.CrossRefGoogle Scholar
Furrer, G., (1972). Bewegungsmessungen auf Solifluktionsdecken. Cailleux, A. Glacial and Periglacial Morphology Zeitschrift für Geomorphologie Supplementband 13, Gebrüder Borntraeger Berlin 87101.Google Scholar
Furrer, G., Bachmann, F., (1972). Solifluktionsdecken im schweizerischen Hochgebirge als Spiegel der postglazialen Landschaftsentwicklung. Cailleux, A. Glacial and Periglacial Morphology Zeitschrift für Geomorphologie Supplementband 13, Gebrüder Borntraeger Berlin 163172.Google Scholar
Goodier, R., Ball, D.F., (1969). Recent ground pattern phenomena in the Rhinog Mountains, North Wales. Geografiska Annaler 51A, 121126.Google Scholar
Graf, K., (1973). Vergleichende Betrachtungen zur Solifluktion in verschiedenen Breitenlagen. Hövermann, J., Kaiser, K. Quaternary Geomorphology Zeitschrift für Geomorphologie Supplementband 16, Gebrüder Borntraeger Berlin 104154.Google Scholar
Harris, C., (1972). Processes of soil movement in turf-banked solifluction lobes, Okstindan, northern Norway. Price, R.J., Sugden, D.E. Polar Geomorphology Institute of British Geographers Special Publication 4, 155174.Google Scholar
Jahn, A., (1961). Quantitative analysis of some periglacial processes in Spitsbergen. Uniwersytet Wroc{awski im. Boles{awa Bieruta zeszyty naukowe, nauki przyrodnicze, Ser. B 5, 134(Nauka o Ziemi II).Google Scholar
James, P.A., (1971). The measurement of soil frost-heave in the field. British Geomorphological Research Group, Technical Bulletin 8, 143.Google Scholar
Johnson, P.L., Billings, W.D., (1962). The alpine vegetation of the Beartooth Plateau in relation to cryopedogenic processes and patterns. Ecological Monographs 32, 105135.CrossRefGoogle Scholar
Källander, H., (1967). Patterned ground and solifluction at North Cape, Magerøy. Lund Studies in Geography, Ser. A Physical Geography 40, 2440.Google Scholar
Kerfoot, D.E., Mackay, J.R., (1972). Geomorphological process studies, Garry Island, N.W.T. Kerfoot, D.E. Mackenzie Delta Area Monograph 22nd International Geographical Congress Brock University St. Catharines, Ontario 115130.Google Scholar
King, R.B., (1972). Lobes in the Cairngorm Mountains, Scotland. Biuletyn Peryglacjalny 21, 153167.Google Scholar
Kinosita, S., Suzuki, Y., Horiguchi, K., Tanuma, K., Aota, M., Ono, T., (1969). Frost heaves in Kitami and Mobetsu (1968–1969). Teion-Kagaku: Low Temperature Science, Series A 27, 379393.Google Scholar
Lindell, T., (1966). Den postglaciala solifluktionen inom Grövelsjöområdets strandlinjesystem. Ymer Årsbok Stockholm.Google Scholar
Lundqvist, G., (1949). The orientation of the block material in certain species of flow earth. Geografiska Annaler 31, 335347.Google Scholar
Lundqvist, J., (1962). Patterned ground and related frost phenomena in Sweden. Sveriges Geologiska Undersökning 55, 1101.Google Scholar
McSaveney, E.R., (1971). The surficial fabric of rockfall talus. Quantitative Geomorphology: Some Aspects and Applications Second Annual Geomorphology Symposia Series State University of New York Binghamton 181197Publications in Geomorphology.Google Scholar
Mackay, J.R., (1971). Ground ice in the active layer and the top portion of permafrost. Brown, R.J.E. Proceedings of a Seminar on the Permafrost Active Layer 4 and 5 May 1971 National Research Council of Canada, Associate Committee on Geotechnical Research, Technical Memorandum No. 103 2630.Google Scholar
Maher, L.J. Jr., (1973). Pollen evidence suggests that climatic changes in the Colorado Rockies during the last 5000 years were out of phase with those in the northeastern United States. Abstracts, Ninth Congress International Union for Quaternary Research Christchurch227228.Google Scholar
Olecki, Z., Widacki, W., (1970). Zwiazek mrozowych ruchów gruntu z warunkami termicznymi w Gaiku Brzezowej (Pogórze Wielickie). Studia Geomorphologica Carpatho-Balcanica 4, 107120.Google Scholar
Pissart, A., (1963). Des replats de cryoturbation au Pays de Galles: Une variete geante de sols en guirlandes. Biuletyn Peryglacjalny 12, 119135.Google Scholar
Pissart, A., (1964). Vitesses des mouvements du sol au Chambeyron (Basses Alpes). Biuletyn Peryglacjalny 14, 303309.Google Scholar
Pissart, A., (1973). L'origine des sols polygonaux et striés du Chambeyron (Basses Alpes). Bulletin de la Société Géographique de Liège 9, 3353.Google Scholar
Price, L.W., (1969). The collapse of solifluction lobes as a factor in vegetating blockfields. Arctic 22, 395402.CrossRefGoogle Scholar
Price, L.W., (1970). Morphology and ecology of solifluction lobe development-Ruby Range, Yukon Territory. Unpublished Ph.D. Thesis Department of Geography, University of Illinois at Urbana-Champaign 325.Google Scholar
Price, L.W., (1973). Rates of mass wasting in the Ruby Range, Yukon Territory. Permafrost, Second International Conference, North American Contribution National Academy of Sciences Washington 235245.Google Scholar
Rapp, A., (1960). Recent development of mountain slopes in Karkevagge and surroundings, northern Scandinavia. Geografiska Annaler 42, 71200.Google Scholar
Rapp, A., (1967). Pleistocene activity and Holocene stability of hillslopes, with examples from Scandinavia and Pennsylvania. L'Evolution des Versants Les Congrès et Colloques de l'Universite de Liège 40, 229244.Google Scholar
Rudberg, S., (1958). Some observations concerning mass movements on slopes in Sweden. Geologiska Föreningens i Stockholm Förhandlingar 80, 114125.CrossRefGoogle Scholar
Rudberg, S., (1962). A report on some field observations concerning periglacial geomorphology and mass movement on slopes in Sweden. Biuletyn Peryglacjalny 11, 311323.Google Scholar
Rudberg, S., (1964). Slow mass movement processes and slope development in the Norra Storfjäll area, southern Swedish Lappland. Birot, P., Macar, P., Mortensen, H. International Advancement in Research on Slope Morphology Zeitschrift für Geomorphologie Supplementband 5, Gebrüder Borntraeger Berlin 192203.Google Scholar
Sandberg, G., (1938). Redogörelser för undersökningar utförda med understöd av sällskapets stipendier. Ymer 58, 333337.Google Scholar
Schmertmann, J.H., Taylor, R.S., (1965). Quantitative data from a patterned ground site over permafrost. U.S. Army, Cold Regions Research and Engineering Laboratory, Research Report 96, 176.Google Scholar
Sigafoos, R.S., Hopkins, D.M., (1952). Soil instability on slopes in regions of perennially-frozen ground. Frost Action in Soils: A Symposium National Academy of Sciences-National Research Council, Highway Research Board, Special Report No. 2 176192.Google Scholar
Smith, J., (1960). Cryoturbation data from South Georgia. Biuletyn Peryglacjalny 8, 7379.Google Scholar
Stocker, E., (1973). Bewegungsmessungen und Studien an Schrägterrassen an einem Hangausschnitt in der Kreuzeckgruppe (Kärnten). Beiträge zur Klimatologie, Meterologie und Klimamorphologie, Festschrift für Hanns Tollner zum 70. Geburtstag Arbeiten aus dem Geographischen Institut der Universität Salzburg 3, 193203.Google Scholar
Sugden, D.E., (1971). The significance of periglacial activity on some Scottish mountains. Geographical Journal 137, 388392.Google Scholar
Troll, C., (1958). Structure soils, solifluction, and frost climates of the earth. Strukturböden, Solifluktion, und Frostklimate der Erde U.S. Army Snow Ice and Permafrost Research Establishment, Translation 43, 1121.Google Scholar
Washburn, A.L., (1947). Reconnaissance geology of portions of Victoria Island and adjacent regions, Arctic Canada. Geological Society of America Memoir 22, 1142.Google Scholar
Washburn, A.L., (1967). Instrumental observations of mass-wasting in the Mesters Vig District, Northeast Greenland. Meddelelser om Grønland 166, 1297.Google Scholar
Washburn, A.L., (1969). Weathering, frost action, and patterned ground in the Mesters Vig District, Northeast Greenland. Meddelelser om Grønland 176, 1303.Google Scholar
Washburn, A.L., (1973). Periglacial Processes and Environments St. Martin's Press New York .Google Scholar
White, I.D., Mottershead, D.N., (1973). Past and present vegetation in relation to solifluction on Ben Arkle, Sutherland. Transactions Botanical Society of Edinburgh 41, 475489.Google Scholar
Williams, P.J., (1957). Some investigations into solifluction features in Norway. Geographical Journal 123, 4258.CrossRefGoogle Scholar
Williams, P.J., (1959). An investigation into processes occurring in solifluction. American Journal of Science 257, 481490.Google Scholar
Williams, P.J., (1966). Downslope soil movement at a Sub-Arctic location with regard to variations with depth. Canadian Geotechnical Journal 3, 191203.Google Scholar
Worsley, P., Harris, C., (1974). Evidence for Neoglacial solifluction at Okstindan, north Norway. Arctic 27, 128144.Google Scholar
Zhigarev, L.A., (1960). Eksperimental 'nye isseldovani ia skorostei dvizheni ia gruntovykh mass na solifl iu k ts ionnykh sklonakh. Trudy Inst. Merzlotovedeni ia im V.A. Obrucheva 16, 183190.Google Scholar