Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-26T06:43:15.057Z Has data issue: false hasContentIssue false

Four thousand years of environmental change and human activity in the Cochabamba Basin, Bolivia

Published online by Cambridge University Press:  20 January 2017

Joseph J. Williams*
Affiliation:
Department of Earth and Environmental Sciences, Centre for Earth, Planetary, Space and Astronomical Research (CEPSAR), The Open University, Walton Hall, Milton Keynes, MK7 6AA, UK
William D. Gosling
Affiliation:
Department of Earth and Environmental Sciences, Centre for Earth, Planetary, Space and Astronomical Research (CEPSAR), The Open University, Walton Hall, Milton Keynes, MK7 6AA, UK
Angela L. Coe
Affiliation:
Department of Earth and Environmental Sciences, Centre for Earth, Planetary, Space and Astronomical Research (CEPSAR), The Open University, Walton Hall, Milton Keynes, MK7 6AA, UK
Stephen J. Brooks
Affiliation:
Department of Entomology, Natural History Museum, Cromwell Road, London, SW7 5BD, UK
Pauline Gulliver
Affiliation:
NERC Radiocarbon Laboratory, Scottish Enterprise Technology Park, East Kilbride, Glasgow, G75 0QF, UK
*
Corresponding author. Fax: + 44 1908 655151. E-mail address:[email protected] (J.J. Williams).

Abstract

The Cochabamba Basin (Bolivia) is on the ancient road network connecting Andean and lowland areas. Little is known about the longevity of this trade route or how people responded to past environmental changes. The eastern end of the Cochabamba valley system constricts at the Vacas Lake District, constraining the road network and providing an ideal location in which to examine past human–environmental interactions. Multiproxy analysis of sediment from Lake Challacaba has allowed a c. 4000 year environmental history to be reconstructed. Fluctuations in drought tolerant pollen taxa and calcium carbonate indicate two periods of reduced moisture availability (c. 4000–3370 and c. 2190–1020 cal yr BP) compared to adjacent wetter episodes (c. 3370–2190 and c. 1020 cal yr BP–present). The moisture fluctuations broadly correlate to El Niño/Southern Oscillation variations reported elsewhere. High charcoal abundance from c. 4000 to 2000 yr ago indicates continuous use of the ancient road network. A decline in charcoal and an increase in dung fungus (Sporormiella) c. 13401210 cal yr BP, suggests that cultural changes were a major factor in shaping the modern landscape. Despite undisputable impacts of human populations on the Polylepis woodlands today, we see no evidence of woodland clearance in the Challacaba record.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbott, M.B., Binford, M.W., Brenner, M., and Kelts, K.R. A 3500 14C yr high-resolution record of water-level changes in Lake Titicaca, Bolivia/Peru. Quaternary Research 47, (1997). 169180.Google Scholar
Abbott, M.B., Wolfe, B.B., Wolfe, A.P., Seltzer, G.O., Aravena, R., Mark, B.G., Polissar, P.J., Rodbell, D.T., Rowe, H.D., and Vuille, M. Holocene paleohydrology and glacial history of the central Andes using multiproxy lake sediment studies. Palaeogeography, Palaeoclimatology, Palaeoecology 194, (2003). 123138.Google Scholar
Ahmed, S.I., and Cain, R.F. Revision of the genera Sporormia and Sporormiella . Canadian Journal of Botany 50, (1972). 419477.Google Scholar
Albarracin-Jordan, J. (1992). Prehispanic and early colonial settlement patterns in the Lower Tiwanaku Valley, Bolivia. Unpublished Ph.D. thesis. South Methodist University, .Google Scholar
Baker, P.A., Seltzer, G.O., Fritz, S.C., Dunbar, R.B., Grove, M.J., Tapia, P.M., Cross, S.L., Rowe, H.D., and Broda, J.P. The history of South American tropical precipitation for the past 25,000 years. Science 291, (2001). 640643.Google Scholar
Bennett, K.D. Determination of the number of zones in a biostratigraphical sequence. The New Phytologist 132, (1996). 155170.Google Scholar
Binford, M.W., Kolata, A.L., Brenner, M., Janusek, J.W., Seddon, M.T., Abbott, M., and Curtis, J.H. Climate variation and the rise and fall of an Andean civilization. Quaternary Research 47, (1997). 235248.Google Scholar
Birks, H.J.B. Numerical tools in palaeolimnology — progress, potentialities, and problems. Journal of Paleolimnology 20, (1998). 307332.CrossRefGoogle Scholar
Birks, H.J.B., and Birks, H.H. Quaternary Palaeoecology. (1980). Edward Arnold, London.Google Scholar
Birks, H.J.B., and Gordon, A.D. Numerical Methods in Quaternary Pollen Analysis. (1985). Academic Press, London.Google Scholar
Björck, S., and Wohlfarth, B. 14C Chronostratigraphic techniques in paleolimnology. Tracking Environmental Change Using Lake Sediments. Smol, J.P., Birks, H.J.B., Last, W.M. Basin Analysis, Coring and Chronological Techniques Volume 1, (2001). Kluwer Academic Publishers, Dordrecht, The Netherlands. 205245.Google Scholar
Bush, M.B., and Weng, C. Introducing a new (freeware) tool for palynology. Journal of Biogeography 34, (2006). 377380.Google Scholar
Cassard, D. GIS Andes: a metallogenic GIS of the Andes Cordillera. 4th International Symposium on Andean Geodynamics. (1999). Institut de Recherche pour le Developpement Publisher, Paris Gottingen, Germany. 147150. Extended Abstracts Google Scholar
Chepstow-Lusty, A.J., Bennett, K.D., Fjeldså, J., Kendall, A., Galiano, W., and Herrera, A.T. Tracing 4,000 years of environmental history in the Cuzco area, Peru, from the pollen record. Mountain Research and Development 18, (1998). 159172.CrossRefGoogle Scholar
Chepstow-Lusty, A.J., Bush, M.B., Frogley, M.R., Baker, P.A., Fritz, S.C., and Aronson, J. Vegetation and climate change on the Bolivian Altiplano between 108,000 and 18,000 yr ago. Quaternary Research 63, (2005). 9098.CrossRefGoogle Scholar
Chepstow-Lusty, A.J., Frogley, M.R., Bauer, B.S., Leng, M.J., Cundy, A.B., Boessenkool, K.P., and Gioda, A. Evaluating socio-economic change in the Andes using oribatid mite abundances as indicators of domestic animal densities. Journal of Archaeological Science 34, (2007). 11781186.Google Scholar
Chepstow-Lusty, A.J., Frogley, M.R., Bauer, B.S., Leng, M.J., Boessenkool, K.P., Carcaillet, C., Ali, A.A., and Gioda, A. Putting the rise of the Inca Empire within a climatic and land management context. Climate of the Past 5, (2009). 375388.Google Scholar
Chiang, J.C.H. The tropics in paleoclimate. Annual Review of Earth and Planetary Sciences 37, (2009). 263297.Google Scholar
Cincotta, R.P., Wisnewski, J., and Engelman, R. Human population in the biodiversity hotspots. Nature 404, (2000). 990992.CrossRefGoogle ScholarPubMed
De la Barra, N. Ecological classification of aquatic vegetation of lacustrine systems in Bolivia. Revista Boliviana De Ecologia y Conservacion Ambiental 13, (2003). 6593.Google Scholar
Ellenberg, H. Wald oder Steppe? Die natürliche Pflanzendecke der Anden Perus. Umschau 1958 (1958). 645681.Google Scholar
Faegri, K., and Iversen, J. Textbook of Pollen Analysis. (1989). Blackburn Press, New Jersey.Google Scholar
Fernández, E. Estudio fitosociológico de los bosques de kewiña (Polylepis spp., Rosaceae) en la Cordillera de Cochabamba. Revista Boliviana De Ecologia y Conservacion Ambiental 2, (1997). 4965.Google Scholar
Fernández, M., Mercado, M., Arrázola, S., and Martínez, E. Esructura y composición florística de un fragmento boscoso de Polylepis besseri . Revista Boliviana De Ecologia y Conservacion Ambiental 9, (2001). 1527.Google Scholar
Fjeldså, J., and Kessler, M. Conserving the Biological Diversity of Polylepis Woodlands of the Highland of Peru and Bolivia: A Contribution to Sustainable Natural Resource Management in the Andes. (1996). NORDECO, Copenhagen, Denmark.Google Scholar
Gareca, E., Fernández, M., and Stanton, S. Dendrochronological investigation of the high Andean tree species Polylepis besseri and implications for management and conservation. Biodiversity and Conservation 19, (2010). 18391851.Google Scholar
Godwin, H. History of British Flora. (1956). Cambridge University Press, Cambridge.Google Scholar
Gosling, W.D., Hanselman, J.A., Knox, C., Valencia, B.G., and Bush, M.B. Long-term drivers of change in Polylepis woodland distribution in the central Andes. Journal of Vegetation Science 20, (2009). 10411052.Google Scholar
Gotkowitz, L. A Revolution for Our Rights: Indigenous Struggles for Land and Justice in Bolivia, 1880–1922. (2007). Duke University Press, Durham.Google Scholar
Grimm, E.C., Maher, L.J. Jr., and Nelson, D.M. The magnitude of error in conventional bulk-sediment radiocarbon dates from central North America. Quaternary Research 72, (2009). 301308.Google Scholar
Hensen, I. Impacts of anthropogenic activity on the vegetation of Polylepis woodlands in the region of Cochabamba, Bolivia. Ecotropica 8, (2002). 183203.Google Scholar
Higueras, A. (1996). Prehispanic settlement and land use in Cochabamba, Bolivia. (Unpublished Ph.D. dissertation). University of Pittsburgh, .Google Scholar
Hijmans, R.J., Cameron, S.E., Parra, J.L., Jones, P.G., and Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology 25, (2005). 19651978.Google Scholar
Hillyer, R., Valencia, B.G., Bush, M.B., Silman, M.R., and Steinitz-Kannan, M. A 24,700-yr paleolimnological history from the Peruvian Andes. Quaternary Research 71, (2009). 7182.Google Scholar
Hooghiemstra, H. Vegetational and Climatic History of the High Plain of Bogota Colombia: A Continuous Record of the Last 3.5 Million Years. (1984). Gantner Verlag, Vaduz.Google Scholar
Ibisch, P.L., Beck, S.G., Gerkmann, B., and Carretero, A. Ecoregiones y ecosistemas. Ibisch, P.L., and Mérida, G. Biodiversidad: la riqueza de Bolivia. Estado de conocimiento y conservación. (2003). FAN, Santa Cruz de la Sierra, Bolivia. 4788.Google Scholar
Janusek, J.W. Ancient Tiwanaku (Case Studies in Early Societies). (2008). Cambridge University Press, New York.Google Scholar
Juggins, S. WinTran Version 1.4. (2002). University of Newcastle, Newcastle upon Tyne, UK.Google Scholar
Juggins, S. C2 Data Analysis (Version 1.4 Beta). (2003). University of Newcastle, Newcastle upon Tyne, UK.Google Scholar
Kessler, M. The “Polylepis Problem”: where do we stand?. Ecotropica 8, (2002). 97110.Google Scholar
Kolata, A.L. Tiwanaku: Portrait of an Andean Civilization. (1993). Blackwell, Cambridge, MA.Google Scholar
Leduc, G., Vidal, L., Tachikawa, K., and Bard, E. ITCZ rather than ENSO signature for abrupt climate changes across the tropical Pacific?. Quaternary Research 72, (2009). 123131.Google Scholar
Line, J. M., and Birks, H. J. B. (1996). BSTICK Version 1.0. Unpublished computer program. Botanical Institute, University of Bergen, .Google Scholar
Lotter, A.F., and Juggins, S. POLPROF, TRAN and ZONE: programs for plotting, editing and zoning pollen and diatom data. INQUA—Subcommission for the Study of the Holocene: Working Group on Data-handling Methods 6, (1991). 46.Google Scholar
Lynch, T.F. Camelid pastoralism and the emergence of Tiwanaku civilization in the south-central Andes. World Archaeology 15, (1983). 114.Google Scholar
Malcolm, J.R., Liu, C., Neilson, R.P., Hansen, L., and Hannah, L. Global warming and extinctions of endemic species from biodiversity hotspots. Conservation Biology 20, (2006). 538548.Google Scholar
Marchant, R., Almeida, L., Behling, H., Berrio, J.C., Bush, M., Cleef, A., Duivenvoorden, J., Kappelle, M., De Oliveira, P., Teixeira de Oliveira-Filho, A., Lozano-Garcia, S., Hooghiemstra, H., Ledru, M.-P., Ludlow-Wiechers, B., Markgraf, V., Mancini, V., Paez, M., Prieto, A., Rangel, O., and Salgado-Labouriau, M.L. Distribution and ecology of parent taxa of pollen lodged within the Latin American Pollen Database. Review of Palaeobotany and Palynology 121, (2002). 175.Google Scholar
McCormac, F.G., Hogg, A.G., Blackwell, P.G., Buck, C.E., Higham, T.F.G., and Reimer, P.J. SHCal04 Southern Hemisphere calibration 0–11.0 cal kyr BP. Radiocarbon 46, (2004). 10871092.Google Scholar
McCune, B., and Mefford, M.J. PC-ORD. Multivariate Analysis of Ecological Data (Version 5). (2006). MjM Software, Gleneden Beach, Oregon, U.S.A..Google Scholar
McQuarrie, N. The kinematic history of the central Andean fold–thrust belt, Bolivia: implications for building a high plateau. Geological Society of America Bulletin 114, (2002). 950963.Google Scholar
Molina, J.A., Navarro, G., de la Barra, N., and Lumbreras, A. Andean aquatic vegetation in central Bolivia. Phytocoenologia 37, (2007). 753768.Google Scholar
Moy, C.M., Seltzer, G.O., Rodbell, D.T., and Anderson, D.M. Variability of El Niño/Southern Oscillation activity at millennial timescales during the Holocene epoch. Nature 420, (2002). 162165.Google Scholar
Munsell Soil Color Charts Munsell Soil Color Charts, Revised Washable Edition. (2000). New Windsor, New York.Google Scholar
Myers, N., Mittermeier, R.A., Mittermeier, C.G., da Fonseca, G.A.B., and Kent, J. Biodiversity hotspots for conservation priorities. Nature 403, (2000). 853858.Google Scholar
Navarro, G., and Ferreira, W. Mapa de vegetación de Bolivia. CD-ROM interactivo. (2007). The Nature Conservancy & Rumbol, Google Scholar
Navarro, G., and Maldonado, M. Geografía Ecológica de Bolivia: Vegetación y Ambientes Acuáticos. (2002). Centro de Ecología Simón I, Patino, Santa Cruz, Bolivia.Google Scholar
Oldfield, F. Lakes and their drainage basins as units of sediment-based ecological study. Progress in Physical Geography 1, (1978). 406504.Google Scholar
Olson, D.M., Dinerstein, E., Wikramanayake, E.D., Burgess, N.D., Powell, G.V.N., Underwood, E.C., D'amico, J.A., Itoua, I., Strand, H.E., Morrison, J.C., Loucks, C.J., Allnutt, T.F., Ricketts, T.H., Kura, Y., Lamoreux, J.F., Wettengel, W.W., Hedao, P., and Kassem, K.R. Terrestrial ecoregions of the world: a new map of life on Earth. Bioscience 51, (2001). 933938.Google Scholar
Paduano, G.M., Bush, M.B., Baker, P.A., Fritz, S.C., and Seltzer, G.O. A vegetation and fire history of Lake Titicaca since the Last Glacial Maximum. Palaeogeography, Palaeoclimatology, Palaeoecology 194, (2003). 259279.Google Scholar
Philander, S.G.H. El Niño, La Niña, and the Southern Oscillation. (1990). Elsevier, New York.Google Scholar
Raper, D., and Bush, M. A test of Sporormiella representation as a predictor of megaherbivore presence and abundance. Quaternary Research 71, (2009). 490496.Google Scholar
Rasband, W.S. ImageJ. (1997–2009). U. S. National Institutes of Health, Bethesda Maryland, USA. http//rsb.info.nih.gov/ij/ Google Scholar
Rein, B., Lückge, A., Reinhardt, L., Sirocko, F., Wolf, A., and Dullo, W.-C. El Niño variability off Peru during the last 20,000 years. Paleoceanography 20, (2005). Google Scholar
Ritter, N. P. (2000). Biodiversity and Phytogeography of Bolivia's Wetland Flora. Unpublished Ph.D. dissertation thesis, University of New Hampshire, .Google Scholar
Roubik, D.W., and Moreno, E. Pollen and Spores of Barro Colorado Island. (1991). Missouri Botanical Garden, Google Scholar
Sánchez, W.C. Inkas, “Flecheros” y Mitmaqkuna. Cambio social y paisajes culturales en los Valles y en los Yungas de Inkachaca/Paracti y Tablas Monte. (Cochabamba-Bolivia, siglos XV–XVI). (2008). Uppsala University-Universidad Mayor de San Simón, Suecia.Google Scholar
Sillar, B. Dung by preference: the choice of fuel as an example of how Andean pottery production is embedded within wider technical, social and economic practices. Archaeometry 42, (2000). 4360.Google Scholar
Stuiver, M., and Reimer, P.J. Extended 14C database and revised CALIB radiocarbon calibration program. Radiocarbon 35, (1993). 215230.Google Scholar
Stuiver, M., and Reimer, P.J. (2010). CALIB Radiocarbon Calibration Program 6.0.1 WWW. program and documentation.Google Scholar
Thompson, L.G., Mosley-Thompson, E., Bolzan, J.F., and Koci, B.R. A 1500-year record of tropical precipitation in ice cores from the Quelccaya Ice Cap, Peru. Science 229, (1985). 971973.Google Scholar
Urrego, D.H., Bush, M.B., and Silman, M.R. A long history of cloud and forest migration from Lake Consuelo, Peru. Quaternary Research 73, (2010). 364373.Google Scholar
Urrego, D.H., Bush, M.B., Silman, M.R., Correa-Metrio, A.Y., Ledru, M.-P., Mayle, F.E., Paduano, G., and Valencia, B.G. Millennial-scale ecological changes in tropical South America since the last glacial maximum. Vimeux, F., Sylvestre, F., and Khodri, M. Past Climate Variability in South America and Surrounding Regions. (2009). 283300.Google Scholar
Valencia, B.G., Urrego, D.H., Silman, M.R., and Bush, M.B. From ice age to modern: a record of landscape change in an Andean cloud forest. Journal of Biogeography 37, (2010). 16371647.Google Scholar
Wagner, W.L. Revised Classification of the Onagraceae. (2007). American Society of Plant Taxonomists, Ann Arbor, Michigan.Google Scholar
Weng, C., Bush, M.B., Curtis, J.H., Kolata, A.L., Dillehay, T.D., and Binford, M.W. Deglaciation and Holocene climate change in the western Peruvian Andes. Quaternary Research 66, (2006). 8796.Google Scholar
Willis, K.J., and Birks, H.J.B. What is natural? The need for a long-term perspective in biodiversity conservation. Science 314, (2006). 12611265.Google Scholar
Winterhalder, B., Larsen, R., and Thomas, R. Dung as an essential resource in a highland Peruvian community. Human Ecology 2, (1974). 89104.Google Scholar
Woodward, C.A., and Shulmeister, J. A Holocene record of human induced and natural environmental change from Lake Forsyth (Te Wairewa), New Zealand. Journal of Paleolimnology 34, (2005). 481501.Google Scholar
World Bank Bolivia: Household Rural Energy Strategy, 62/94, Washington, D. C.. (1994). Google Scholar
Ybert, J.-P. Ancient lake environments as deduced from pollen analysis. Dejoux, C., and Iltis, A. Lake Titicaca. A Synthesis of Limnological Knowledge. (1992). Kluwer Academic Publishing, Dordrecht. 4960.Google Scholar
Yevich, R., and Logan, J.A. An assessment of biofuel use and burning of agricultural waste in the developing world. Global Biogeochem Cycles 17, (2003). 10951135.Google Scholar
Zhou, J., and Lau, K.M. Does a monsoon climate exist over South America?. Journal of Climate 11, (1998). 10201040.Google Scholar