Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-24T09:49:08.387Z Has data issue: false hasContentIssue false

Fluctuations of Outlet and Valley Glaciers in the Southern Andes (Argentina) during the Past 13,000 Years

Published online by Cambridge University Press:  20 January 2017

Gerd Wenzens*
Affiliation:
Department of Geography, University of Düsseldorf, D-40225, Düsseldorf, Germany

Abstract

In the southern Argentine Andes, ten advances of valley glaciers were used to reconstruct the late-glacial and Holocene glacier history. The accumulation areas of these glaciers lie in the Precordillera and are thus independent of fluctuations of the South Patagonian Icefield. Like the Viedma outlet glacier, the valley glaciers advanced three times during late-glacial time (14,000–10,000 yr B.P.). The youngest advance correlates with the Younger Dryas Stade, based on two minimum AMS14C dates of 9588 and 9482 yr B.P. The second oldest advance occurred before 11,800 yr B.P. During the first half of the Holocene, (ca. 10,000–5000 yr B.P.), advances culminated about 8500, 8000–7500, and 5800–5500 yr B.P. During the second half of the Holocene, advances occurred between ca. 4500 and 4200 yr B.P., as well as between 3600 and 3300 yr B.P. In the Rı́o Cóndor valley three subsequent advances have been identified.

Type
Original Articles
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aniya, M., (1995). Holocene glacial chronology in Patagonia: Tyndall and Upsala glaciers. Arctic and Alpine Research 27, 311322.Google Scholar
Aniya, M., (1996). Holocene variations of Ameghino Glacier, southern Patagonia. The Holocene 6, 247252.Google Scholar
Ashworth, A.C., Hoganson, J., (1993). The magnitude and rapidity of the climate change marking the end of the Pleistocene in the mid-latitudes of South America. Palaeogeography, Palaeoclimatology, Palaeoecology 101, 263270.Google Scholar
Blunier, T., Schwander, J., Stauffer, B., Stocker, T., Dällenbach, A., Indermühle, A., Tschumi, J., (1997). Timing of the Antarctic Cold Reversal and the atmospheric CO2 . Geophysical Research Letter 24, 26832686.Google Scholar
Caldenius, C.C., (1932). Las glaciaciones cuaternarios en la Patagonia y Tierra del Fuego. Geografiska Annaler 14, 1164.Google Scholar
Clapperton, C.M., (1990). Quaternary glaciations in the Southern Hemisphere: An overview. Quaternary Science Reviews 9, 299304.Google Scholar
Clapperton, C., (1993). Quaternary Geology and Geomorphology of South America. Elsevier, Amsterdam.Google Scholar
Clapperton, C.M., (1993). Glacier readvances in the Andes at 12,500–10,000 yr B.P.: implications for mechanismen of Late-glacial climatic change. Journal of Quaternary Science 8, 197215.Google Scholar
Clapperton, C.M., (1995). Fluctuations of local glaciers at the termination of the Pleistocene 18–8 ka B.P. Quaternary International 28, 4150.CrossRefGoogle Scholar
Clapperton, C.M., (1997). Fluctuations of local glaciers 30–8 KA B.P.: Overview. Quaternary International 38/39, 36.CrossRefGoogle Scholar
Clapperton, C.M., Sugden, D., (1988). Holocene Glacier Fluctuations in South America and Antarctica. Quaternary Science Reviews 7, 185198.Google Scholar
Heusser, C.J., (1993). Late-Glacial of Southern South America. Quaternary Science Reviews 12, 345350.Google Scholar
Hulton, N., Sugden, D., Payne, A., Clapperton, C., (1994). Glacier Modeling and the Climate of Patagonia during the Last Glacial Maximum. Quaternary Research 42, 119.Google Scholar
Lumley, S.H., Switsur, R., (1993). Late Quaternary chronology of the Taitao Peninsula, southern Chile. Journal of Quaternary Science 8, 161165.Google Scholar
Malagnino, E., Strelin, J., (1992). Variations of Upsala Glacier in southern Patagonia since the late Holocene to the present. Glaciological Researches in Patagonia. Japanese Society of Snow and Ice, p. 6185.Google Scholar
Marden, C.J., (1993). Lateglacial and Holocene variations of the Grey Glacier, an outlet of the South Patagonian Icefield. Scottish Geographical Magazine 109, 2731.Google Scholar
Marden, C.J., (1994). Factors affecting the volume of Quaternary glacial deposits in Southern Patagonia. Geografiska Annaler 76A, 261269.Google Scholar
Marden, C.J., Clapperton, C.M., (1995). Fluctuations of the South Patagonia Icefield during the last glaciation and the Holocene. Journal of Quaternary Science 10, 197210.Google Scholar
Markgraf, V., (1993). Younger Dryas in southernmost South America—An Update. Quaternary Science Reviews 12, 351355.Google Scholar
Markgraf, V., Dodson, J.R., Kershaw, A.P., McGlone, S., Nicholls, N., (1992). Evolution of late Pleistocene and Holocene climates in the circum-South Pacific land areas. Climate Dynamics 6, 193211.Google Scholar
McCulloch, R.D., Bentley, J., (1998). Late glacial ice advances in the Strait of Magellan, southern Chile. Quaternary Science Reviews 17, 775787.Google Scholar
Mercer, J.H., (1965). Glacier variations in Southern Patagonia. Geographical Review 55, 390413.Google Scholar
Mercer, J.H., (1968). Variations of some Patagonian Glaciers since the late-glacial. American Journal of Science 266, 91109.Google Scholar
Mercer, J.H., (1970). Variations of some Patagonian Glaciers since the late-glacial II. American Journal of Science 269, 125.Google Scholar
Mercer, J.H., (1976). Glacial history of southernmost South America. Quaternary Research 6, 125166.Google Scholar
Mercer, J.H., (1982). Holocene glacier variations in southern South America. Striae 18, 3540.Google Scholar
Röthlisberger, F., (1986). 10,000 Jahre Gletschergeschichte der Erde. Ein Vergleich zwischen Nord- und Südhemisphäre. Alpen-Skandinavien-Himalaya-Alaska-Südamerika-Neuseeland. p. 315.Google Scholar
Schäbitz, F., (1991). Holocene vegetation and climate in southern Santa Cruz, Argentina. Bamberger Geographische Schriften 11, 235244.Google Scholar
Schäbitz, F., (1998). Pollenanalytische Untersuchungen des Profils “Guanaco Sec. III” Prov. St. Cruz, Argentinien. Terra Nostra 9815, 141142.Google Scholar
Schellmann, G., (1998). Jungkänozoische Landschaftsgeschichte Patagoniens (Argentinien). Essener Geographische Arbeiten 29, 216.Google Scholar
Warren, C.R., Greene, D.R., Glasser, N.F., (1995). Glacier Upsala, Patagonia: rapid calving retreat in fresh water. Annals of Glaciology 21, 311316.Google Scholar
Warren, C.R., Sugden, D.E., (1993). The Patagonian Icefields: A Glaciological Review. Arctic and Alpine Research 25, 316331.Google Scholar
Wenzens, G., Wenzens, E., Schellmann, G., (1996). Number and types of piedmont glaciations east of the Central Southern Patagonian Icefield. Zentralblatt Geologie und Paläontologie I (1994), 779790.Google Scholar
Wenzens, G., Wenzens, E., Schellmann, G., (1997). Early Quaternary genesis of glacial and eolian forms in semiarid Patagonia, Argentina. Zeitschrift für Geomorphologie. Neue Folge. Supplementband 111, 131144.Google Scholar
Wenzens, G., Wenzens, E., (1998). Late glacial and Holocene glacier advances in the area of Lago Viedma (Patagonia, Argentina). Zentralblatt Geologie und Paläontologie I 1997, 593608.Google Scholar