Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-23T21:31:31.494Z Has data issue: false hasContentIssue false

First archaeointensity reference paleosecular variation curve for South America and its implications for geomagnetism and archaeology

Published online by Cambridge University Press:  01 March 2019

Avto Goguitchaichvili*
Affiliation:
Servicio Arqueomagnético Nacional and Laboratorio Interinstitucional de Magnetismo Natural, Instituto de Geofísica, Universidad Nacional Autónoma de México, Campus Morelia, (58089) Mexico
Catriel Greco
Affiliation:
Consejo Nacional de Investigaciones Científicas y Técnicas - Departamento de Geología, Universidad de San Luis, San Luis (5700) Argentina
Rafael Garcia Ruiz
Affiliation:
Servicio Arqueomagnético Nacional and Laboratorio Interinstitucional de Magnetismo Natural, Instituto de Geofísica, Universidad Nacional Autónoma de México, Campus Morelia, (58089) Mexico
Lucas Pereyra Domingorena
Affiliation:
Instituto de las Culturas, Consejo Nacional de Investigaciones Científicas y Técnicas - Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires (1093) Argentina
Ruben Cejudo
Affiliation:
Servicio Arqueomagnético Nacional and Laboratorio Interinstitucional de Magnetismo Natural, Instituto de Geofísica, Universidad Nacional Autónoma de México, Campus Morelia, (58089) Mexico
Juan Morales
Affiliation:
Servicio Arqueomagnético Nacional and Laboratorio Interinstitucional de Magnetismo Natural, Instituto de Geofísica, Universidad Nacional Autónoma de México, Campus Morelia, (58089) Mexico
Claudia Gogorza
Affiliation:
Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires, Universidad Nacional del Centro de la Provincia de Buenos Aires - Comisión de Investigaciones Científicas de la Provincia de Buenos Aires - Consejo Nacional de Investigaciones Científicas y Técnicas, Tandil (7000), Argentina
Cristina Scattolin
Affiliation:
Instituto de las Culturas, Consejo Nacional de Investigaciones Científicas y Técnicas - Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires (1093) Argentina
Myriam Tarragó
Affiliation:
Instituto de las Culturas, Consejo Nacional de Investigaciones Científicas y Técnicas - Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires (1093) Argentina
*
*Corresponding author e-mail address: [email protected]

Abstract

We report comprehensive rock-magnetic and archaeointensity investigations from 21 well-constrained pottery fragments from the Catamarca province of northwest Argentina. The absolute ages of the studied sites are ascertained by several high-quality radiometric ages and range between 1940 to 114014C yr BP. Magnetic mineralogy experiments indicates that the remanence is carried by thermally stable Ti-poor titanomagnetites. Forty-seven samples belonging to 11 out of 98 studied potsherds yielded reliable absolute intensity determinations judging from the quality parameters associated with the Thellier double-heating experiments. Moreover, we analyzed the available absolute geomagnetic intensities associated with the radiometric ages to construct the first intensity paleosecular variation curve (PSVC) for South America using thermoremanent magnetization carried by burned archaeological artifacts obtained in the present investigation and 79 other selected archaeointensities (out of 213 published in the literature). The dataset is used to build the PSVC reference curve by combined bootstrap and temporal P-spline methods. The variation curve shows significant differences with the global prediction model SHA.DIF.14k mainly based on the GEOMAGIA database. This intensity PSVC curve shows reasonably good agreement with paleosecular variation curves for Europe between 850 through 1150 BC and for Asia between 1000 and 1500 BC. This regional curve may be used as most reliable archaeomagnetic dating tool for the major part of South America (Peru, Brazil, Argentina, Chile, and Bolivia) for the last two millennia.

Type
Research Article
Copyright
Copyright © University of Washington. Published by Cambridge University Press, 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Argollo, J., Mourguiart, P., 1995. Los climas cuaternarios de Bolivia. In: Argollo, J. and Mourguiart, P. (Eds.), Los Climas Cuaternarios en América del Sur. Institut Français de Recherche Scientifique pour le Développement en Coopération, La Paz, pp. 135155.Google Scholar
Barton, C.E., Merrill, R. T., Barbetti, M., 1979. Intensity of the Earth's magnetic field over the last 10,000 years. Physics of the Earth and Planetary Interiors 20, 96110.Google Scholar
Brown, M.C., Donadini, F., Nilsson, A., Panovska, S., Frank, U., Korhonen, K., Schuberth, M., Korte, M., Constable, C.G., 2015. GEOMAGIA50.v3: 2. A new paleomagnetic database for lake and marine sediments. Earth, Planets and Space 67, 70.Google Scholar
Cai, S., Jin, G., Tauxe, L., Deng, C., Qin, H., Pan, Y., Zhu, R., 2016. Archaeointensity results spanning the past 6 kilo years from eastern China and implications for extreme behaviour of the geomagnetic field. Proceedings of the National Academy of Sciences of the United States of America 114, 3944.Google Scholar
Casas, L., Incoronato, A., 2007. Distribution analysis of errors due to relocation of geomagnetic data using the ‘Conversion via Pole’ (CVP) method: implications on archaeomagnetic data. Geophysical Journal International 169, 448454.Google Scholar
Chauvin, A., Garcia, Y., Lanos, Ph., Laubenheimer, F., 2000. Paleointensity of the geomagnetic field recovered on archaeomagnetic sites from France. Physics of the Earth and Planetary Interiors 120, 111136.Google Scholar
Courtillot, V., Gallet, Y., Le Mouël, J.L., Fluteau, F., Genevey, A., 2007. Are there connections between the Earth's magnetic field and climate? Earth and Planetary Science Letters 253, 328339.Google Scholar
Coe, R.S., Grommé, S., Mankinen, E.A., 1978. Geomagnetic paleointensities from radiocarbon-dated lava flows on Hawaii and the question of the Pacific non-dipole low. Journal of Geophysical Research 83, 17401756.Google Scholar
Daly, L., Le Goff, M., 1996. An updated and homogeneous world secular variation data base: smoothing of the archaeomagnetic results. Physics of the Earth and Planetary Interiors 93, 159190.Google Scholar
Dekkers, M.J., Bonhël, H.N., 2006. Reliable absolute palaeointensities independent of magnetic domain state. Earth and Planetary Science Letters 248, 508517.Google Scholar
Dunlop, D.J., 2002. Theory and applications of the Day plot (Mra/Mr versus Hcr/Hc). Theoretical curves and test using titanomagnetite data. Journal of Geophysical Research 107, 10292001.Google Scholar
Genevey, A., Gallet, Y., Constable, C.G., Korte, M., Hulot, G., 2008. ArcheoInt: an upgraded compilation of geomagnetic field intensity data for the past ten millennia and its application to the recovery of the past dipole moment. Geochemistry, Geophysics, Geosystems, 9. http://dx.doi.org/10.1029/2007gc001881.Google Scholar
Genevey, A., Gallet, Y., Jesset, S., Thébault, E., Bouillon, J., Lefèvre, A., Le Goff, M., 2016. New archeointensity data from French Early Medieval pottery production (6th-10th century AD): tracing 1500 years of geomagnetic field intensity variations in Western Europe. Physics of the Earth and Planetary Interiors 257, 205219.Google Scholar
Goguitchaichvili, A., García-Ruiz, R., Pavón-Carrasco, F. J., Morales Contreras, J. J., Soler-Arechalde, A. M., Urrutia-Fucugauchi, J., 2018. Last three millennia Earth's Magnetic field strength in Mesoamerica and southern United States: implications in geomagnetic and archaeology. Physics of the Earth and Planetary Interiors 279, 7991.Google Scholar
Goguitchaichvili, A., Greco, C., Morales, J., 2011. Geomagnetic field intensity behavior in South America between 400 AD and 1800 AD: first archeointensity results from Argentina. Physics of the Earth and Planetary Interiors 186, 191197.Google Scholar
Goguitchaichvili, A., Loponte, D., Morales, J., Acosta, A., 2012. The archaeointensity of the Earth's magnetic field retrieved from Pampean ceramics (South America). Archaeometry 54, 388400.Google Scholar
Goguitchaichvili, A., Morales, J., Schavelzon, D., Vásquez, C., Gogorza, C., Loponte, D., Rapalini, A., 2015. Variation of the Earth's magnetic field strength in South America during the last two millennia: new results from historical buildings of Buenos Aires and Re-evaluation of regional data. Physics of the Earth and Planetary Interiors 245, 1525.Google Scholar
Gómez-Paccard, M., Osete, M.L., Chauvin, A., Pavón-Carrasco, F.J., Peréz-Asensio, M., Jiménez, P., Lanos, P., 2016. New constraints on the most significant paleointensity change in Western Europe over the last two millennia: a non-dipolar origin? Earth and Planetary Science Letters 454, 5564.Google Scholar
González, L., Tarragó, M., 2005. Vientos del sur: el valle de Yocavil (Noroeste argentino) bajo la dominación incaica. Estudios Atacameños 29, 6795.Google Scholar
Greco, C., 2014. La cronología del valle de Yocavil. Escalas, datos y resultados. Arqueología 20 Dossier, 1137.Google Scholar
Greco, C., Palamarczuk, V., 2014. Strategy for radiocarbon chronological assessment of ceramic styles: an example from prehispanic northwestern Argentina. Radiocarbon 56, 10931106.Google Scholar
Gunn, N.M., Murray, B.Z., 1980. Geomagnetic-field magnitude variations in Peru derived from archaeological ceramics dated by thermoluminescence. Geophysical Journal of the Royal Astronomical Society 62, 345366.Google Scholar
Hartmann, G., Genevey, A., Gallet, Y., Trindade, R., Etchevarne, C., Le Goff, M., Afonso, M.C., 2010. Archeointensity in Northeast Brazil over the past five centuries. Earth and Planetary Science Letters 296, 340352.Google Scholar
Hartmann, G., Genevey, A., Gallet, Y., Trindade, R., Le Goff, M., 2011. New historical archeointensity data from Brazil: evidence for a large regional non-dipole field contribution over the past few centuries. Earth and Planetary Science Letters 306, 6677.Google Scholar
Hartmann, G.A., Pacca, I.G., 2009. Time evolution of the South Atlantic Magnetic Anomaly. Annals of the Brazilian Academy of Science 81, 243255.Google Scholar
Hill, M.J., Gratton, M.N., Shaw, J., 2002. A comparison of thermal and microwave palaeomagnetic techniques using lava containing laboratory induced remanence. Geophysical Journal International 151, 157163.Google Scholar
Kitizawa, K., Kobayashi, K., 1968. Intensity variation of the geomagnetic field during the past 4000 years in South America. Journal of Geomagnetism and Geolectricity 20, 719.Google Scholar
Kono, M., Ueno, N., Onuki, Y., 1986. Paleointensities of the geomagnetic field obtained from pre-Inca potsherds near Cajamarca, Northern Peru. Journal of Geomagnetism and Geoelectricity 38, 13391348.Google Scholar
Kosterov, A.A., Perrin, M., Glen, J.M., Coe, R.S., 1998. Paleointensity of the Earth's magnetic field in Early Cretaceous time: the Parana Basalt, Brazil. Journal of Geophysical Research 103, 97399753.Google Scholar
Lanos, P., Le Goff, M., Kovacheva, M., Schnepp, E., 2005. Hierarchical modelling of archeomagnetic data and curve estimation by moving average technique. Geophysical Journal International 160, 440476.Google Scholar
Lazzari, M., 2006. Travelling Things and the Production of Social Space: An Archaeological Study of Value and Circulation in NW Argentina, First Millennium AD. PhD dissertation, Columbia University, New York.Google Scholar
Lazzari, M., Pereyra Domingorena, L., 2008. Revisitando Ingenio Arenal-Faldas del Cerro (Catamarca): relevamiento planimétrico y nuevos sondeos. In: Austral, A., Tamagnini, M. (Eds.), Problemáticas de la arqueología comtemporánea, Vol. II. Editorial de la Universidad Nacional de Rio Cuarto, Río Cuarto, pp. 761764.Google Scholar
Lee, S., 1975. Secular Variation of the Intensity of the Geomagnetic Field during the Past 3000 Years in North, Central and South America. PhD dissertation, University of Oklahoma, Norman.Google Scholar
Le Goff, M., Gallet, Y., Genevey, A., Warmé, N., 2002. On archeomagnetic secular variation curves and archeomagnetic dating. Physics of the Earth and Planetary Interiors 134, 201203.Google Scholar
Morales, J., Acosta, G., Gonzalez-Moran, T., Alva-Valdivia, L., Robles-Camacho, J., Hernandez-Bernal, M., 2009. Magnetic properties and archeointensity determination on pre-Columbian pottery from Chiapas, Mesoamerica. Earth Planet and Space 61, 8391.Google Scholar
Morales, J., Goguitchaichvili, A., Aguilar-Reyes, B., Pineda-Duran, M., Camps, P., Carvallo, C., Calvo-Rathert, M., 2011. Are ceramics and bricks reliable absolute geomagnetic intensity carriers? Physics of the Earth and Planetary Interiors 187, 310321.Google Scholar
Nagata, T., Kobayashi, K., Schwarz, E.J., 1965. Archaeomagnetic intensity studies of South and Central America. Journal of Geomagnetism and Geoelectricity 17, 399405.Google Scholar
Palamarczuk, V., Spano, R., Magnífico, D., Weber, F., López, S., Maniasiewicz, M., 2007. Soria 2: apuntes sobre un sitio temprano en el Valle de Yocavil, Catamarca, Argentina. Intersecciones en Antropología 8, 121134.Google Scholar
Paoli, H.P., Ledesma, F.M., Elena, H.J., Mosciaro, M.J., Noe, Y.E., 2011. Caracterización de las cuencas hídricas de las provincias de Salta y Jujuy. Cuencas hidrográficas de la provincia de Salta: su relación con el uso de agua para riego. Estación Experimental Agropecuaria Salta, INTA, Salta (accessed November 22, 2013). http://inta.gob.ar/documentos/123.Google Scholar
Pavón-Carrasco, F.J., Osete, M.L., Torta, J.M., De Santis, A., 2014. A geomagnetic field model for the Holocene based on archaeomagnetic and lava flow data. Earth and Planetary Science Letters 388, 98109.Google Scholar
Pavón-Carrasco, F.J., Rodríguez-González, J., Osete, M.L., Torta, J.M., 2011. A Matlab tool for archaeomagnetic dating. Journal of Archaeological Science 38, 408419.Google Scholar
Pereyra Domingorena, L., 2010. Manufacturas alfareras de las sociedades aldeanas del primer milenio d.C. al sur de los valles Calchaquíes. PhD dissertation, University of Buenos Aires, Buenos Aires.Google Scholar
Poletti, W., Trinidade, R.I.F., Hartmann, G.A., Damiani, N., Rech, R.M., 2016. Archeomagnetic of Jesuit missions in south Brazil (1657–1706). Earth and Planetary Science Letters 455, 3647.Google Scholar
Roberts, A.P., Cui, Y., Verosub, K., 1995. Wasp-waisted hysteresis loops: mineral magnetic characteristics and discrimination of components in mixed magnetic systems. Journal of Geophysical Research 100, 17.90917.929.Google Scholar
Roperch, P., Chauvin, A., Lara, L.E., Moreno, H., 2015. Secular variation of the Earth's magnetic and application to the paleomagnetic dating of historical lava flows in Chile. Physics of the Earth and Planetary Interiors 242, 6578.Google Scholar
Roperch, P., Chauvin, A., Le Pennec, J.L., Lara, L.E., 2014. Paleomagnetic study of juvenile basaltic-andesite clasts from Andean pyroclastic density current deposits. Physics of the Earth and Planetary Interiors 227, 2029.Google Scholar
Scattolin, M.C., 1990. Dos asentamientos formativos al pie del Aconquija. El sitio Loma Alta. (Catamarca, Argentina). Gaceta Arqueológica Andina 5, 85100.Google Scholar
Scattolin, M.C., 2003. Los ancestros de Calchaquí: una visión de la colección Zavaleta. Cuadernos de la Facultad de Humanidades y Ciencias Sociales de la Universidad Nacional de Jujuy 20, 5179.Google Scholar
Scattolin, M.C., 2007. Santa María antes del año mil. Fechas y materiales para una historia cultural. In: Williams, V., Ventura, B., Callegari, A., Yacobaccio, H. (Eds.), Sociedades Precolombinas Surandinas: Temporalidad, Interacción y dinámica cultural del NOA en el ámbito de los Andes Centro-Sur. Publisher: Editors, Buenos Aires, pp. 203219.Google Scholar
Scattolin, M.C., 2010. La organización del hábitat precalchaquí (500 a.C.–1000 d.C.) en el hábitat prehispánico. In: Albeck, M.E., Scattolin, M.C., Korstanje, M.A. (Eds.), Arqueología de la arquitectura y de la construcción del espacio organizado. Facultad de Humanidades y Ciencias Sociales, Universidad Nacional de Jujuy, San Salvador de Jujuy, pp. 1351.Google Scholar
Scattolin, M.C., Cortés, L.I., Bugliani, M.F., Calo, C.M., Domingorena, L.P., Izeta, A.D., Lazzari, M., 2009. Built landscapes of everyday life: a house in an early agricultural village of north-western Argentina. World Archaeology 41, 396414.Google Scholar
Scattolin, M. C., Bugliani, M.F., Pereyra Domingorena, L., Cortés, L.I., Lazzari, M., Izeta, A.D., Calo, C.M., 2015. Habitar, circular, hacer. El punto de vista de La Quebrada. In: Korstanje, A., Lazzari, M. (Eds.), Crónicas materiales precolombinas. Arqueología de los primeros poblados del Noroeste Argentino. Sociedad Argentina de Antropología, Buenos Aires, pp. 427464.Google Scholar
Shaw, J., 1974. A new method of determining the magnitude of the paleomagnetic field applications to 5 historic lavas and five archeological samples. Geophysical Journal of the Royal Astronomical Society 39, 133141.Google Scholar
Shaw, J., Walton, D., Yang, S., Rolph, T.C., Share, J.A., 1996. Microwave archeointensities from Peruvian ceramics. Geophysical Journal International 124, 241244.Google Scholar
Spano, R., Grimoldi, M.S., Palamarczuk, V., 2014. Morir temprano. Entierros de infantes en un espacio doméstico formativo de Yocavil, noroeste argentino. Museo Arqueológico Pío Pablo Díaz, Estudios. Antropología. Historia. Nueva Serie 2, 141–173.Google Scholar
Stine, S., 1994. Extreme and persistent drought in California and Patagonia during medieval time. Nature 369, 546549.Google Scholar
Tarragó, M., González, L., 2005. Variabilidad en los modos arquitectónicos incaicos: un caso de estudio en el valle de Yocavil (noroeste argentino). Chungara 37, 129143.Google Scholar
Tarragó, M., González, L., 2008. Introducción: estudios arqueológicos en Yocavil. In: Myriam Tarragó, M., González, L.R. (Eds.), Estudios arqueológicos en Yocavil. Asociación de Amigos del Museo Etnográfico, Buenos Aires, pp. 717.Google Scholar
Tema, E., Kondopoulou, D., 2011. Secular variation of the Earth's magnetic field in the Balkan region during the last eight millennia based on archaeomagnetic data. Geophysical Journal International 186, 603614.Google Scholar
Tineo, A., 2005. Estudios hidrogeológicos del Valle del Río Santa María - Provincia de Catamarca. Serie Correlación Geológica 20. Instituto Superior de Correlación Geológica (INSUGEO), San Miguel de Tucumán.Google Scholar
Thellier, E., Thellier, O., 1959. Sur l'intensité du champ magnétique terrestre dans le passé historique et géologique. Annals of Geophysics 15, 285376.Google Scholar
Thébault, E., Gallet, Y., 2010. A bootstrap algorithm for deriving the archeomagnetic field intensity variation curve in the Middle East over the past 4 millennia B.C. Geophysical Research Letters 37, L22303.Google Scholar
Thébault, E., Finlay, C.C., Beggan, C.D., Alken, P., Aubert, J., Barrois, O., Bertrand, F., et al. , 2015. International Geomagnetic Reference Field: the 12th generation. Earth, Planets and Space 6779.Google Scholar
Vásquez, C. A., Nami, H. G., Rapalini, A. E., 2001. Magnetic sourcing of obsidians in southern South America: some successes and doubts. Journal of Archaeological Science 28, 613618.Google Scholar
Waterbolk, H.T., 1983. Ten guidelines for the archaeological interpretation of radiocarbon dates. PACT Journal of the European Study Group on Physical, Chemical and Mathematical Techniques Applied to Archaeology 8, 5770.Google Scholar
Walton, D., 1997. Archeomagnetic intensity measurements using a SQUID magnetometer. Archaeometry 19, 192200.Google Scholar
Williams, V., 2003. Nuevos datos sobre la prehistoria local en la Quebrada de Tolombón. Pcia. de Salta. Argentina. Anales Nueva Epoca 6, 163209.Google Scholar
Williams, V., 2010. El uso del espacio a nivel estatal en el sur del Tawantinsuyu. In: Albeck, M.E., Scattolin, M.C., Korstanje, M.A. (Eds.), El hábitat prehispánico: arqueología de la arquitectura y de la construcción del espacio organizado. Facultad de Humanidades y Ciencias Sociales, Universidad Nacional de Jujuy, San Salvador de Jujuy, pp. 77114.Google Scholar
Yang, S., Shaw, J., Rolph, T. C., 1993. Archeointensity studies of Peruvian potteries from 1200 BC to 1800 AD. Journal of Geomagnetism and Geoelectricity 45, 11931207.Google Scholar