Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-26T19:08:58.442Z Has data issue: false hasContentIssue false

Fingerprinting of soil organic matter as a proxy for assessing climate and vegetation changes in last interglacial palaeosols (Veldwezelt, Belgium)

Published online by Cambridge University Press:  20 January 2017

Karen Vancampenhout*
Affiliation:
Department of Earth and Environmental Sciences, K.U. Leuven. Celestijnenlaan 200E, B-3001 Leuven, Belgium
Katinka Wouters
Affiliation:
Department of Earth and Environmental Sciences, K.U. Leuven. Celestijnenlaan 200E, B-3001 Leuven, Belgium
Alexander Caus*
Affiliation:
Department of Earth and Environmental Sciences, K.U. Leuven. Celestijnenlaan 200E, B-3001 Leuven, Belgium
Peter Buurman
Affiliation:
Earth System Science, Department of Environmental Sciences, Wageningen University, P.O. Box 47, NL 6700 AA Wageningen, The Netherlands
Rudy Swennen
Affiliation:
Department of Earth and Environmental Sciences, K.U. Leuven. Celestijnenlaan 200E, B-3001 Leuven, Belgium
Jozef Deckers
Affiliation:
Department of Earth and Environmental Sciences, K.U. Leuven. Celestijnenlaan 200E, B-3001 Leuven, Belgium
*
*Corresponding author. K.U. Leuven, Department of Earth and Environmental Sciences, Division Soil and Water Management, Celestijnenlaan 200E, B-3001 Leuven, Belgium. Fax: +32 0032 16 32 97 60.E-mail address:[email protected] (K. Vancampenhout).
*Corresponding author. K.U. Leuven, Department of Earth and Environmental Sciences, Division Soil and Water Management, Celestijnenlaan 200E, B-3001 Leuven, Belgium. Fax: +32 0032 16 32 97 60.E-mail address:[email protected] (K. Vancampenhout).

Abstract

Soil characteristics in palaeosols are an important source of information on past climate and vegetation. Fingerprinting of soil organic matter (SOM) by pyrolysis-GC/MS is assessed as a proxy for palaeo-reconstruction in the complex of humic layers on top of the Rocourt pedosequence in the Veldwezelt-Hezerwater outcrop (Belgian loess belt). The fingerprints of the extractable SOM of different soil units are related to total organic carbon content, δ13C and grain-size analysis. Combined results indicate that the lower unit of the humic complex reflects a stable soil surface, allowing SOM build-up, intensive microbial activity and high decomposition. Higher in the profile, decomposition and microbial activity decrease. This is supported by a shift in the isotopic signal, an increasedUratio and evidence of wildfires. Although the chemical composition of the extracted SOM differed greatly from recent SOM, fingerprinting yielded detailed new information on SOM degree of decomposition and microbial contribution, allowing the reconstruction of palaeo-environmental conditions during pedogenesis.

Type
Research Article
Copyright
Elsevier Inc.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Deceased.

References

Almendros, G., Knicker, H., Gonzalez-Vila, F.J., (2003). Rearrangement of carbon and nitrogen forms in peat after progressive thermal oxidation as determined by solid-state 13C- and 15N-NMR spectroscopy. Organic Geochemistry 34, 15591568.CrossRefGoogle Scholar
Bringmans, P.M.M.A., (2006). Multiple middle palaeolithic occupations in a loess–soil sequence at Veldwezelt-Hezerwater Limburg, Belgium. Ph.D. thesis, K.U.Leuven.Google Scholar
Bronger, A., (2003). Correlation of loess-paleosol sequences in East and Central Asia with SE Central Europe: Towards a continental Quaternary pedostratigraphy and paleoclimatic history. Quaternary International 106, 1131.CrossRefGoogle Scholar
Bronger, A., Winter, R., Heinkele, T., (1998a). Pleistocene climatic history of East and Central Asia based on paleopedological indicators in loess-paleosol sequences. Catena 34, 111.CrossRefGoogle Scholar
Bronger, A., Winter, R., Sedov, S., (1998b). Weathering and clay mineral formation in two Holocene soils and in buried paleosols in Tadjikistan: Towards a Quaternary paleoclimatic record in Central Asia. Catena 34, 1934.CrossRefGoogle Scholar
Buurman, P., Jongmans, A.G., Kasse, C., van Lagen, B., (1998a). Oil seepage or fossil podzol? An Early Oligocene oil seepage at the southern rim of the North Sea Basin, near Leuven (Belgium)—discussion. Netherlands Journal of Geosciences 77, 1, 9398.CrossRefGoogle Scholar
Buurman, P., Nierop, K.G.J., Pontevedra Pombal, X., Martinez Cortizas, A., (2006). Molecular chemistry by pyrolysis-GC/MS of selected samples of the Penido Vello peat deposit, Galicia, NW Spain. Chapter 10. Martini, P., Martinez Cortizas, A., Chesworth, W., Peatlands—Evolution and Records of Environmental and Climate Changes. Elsevier, Amsterdam.Google Scholar
Buurman, P., Pape, Th., Reijneveld, J.A., de Jong, F., van Gelder, E., (2001). Laser-diffraction and pipette-method correlations for fine fractions of marine, fluvial and loess samples. Netherlands Journal of Geosciences 80, 2, 4957.CrossRefGoogle Scholar
Buurman, P., Schellekens, J., Fritze, H., Nierop, K.G.J., (2007). Selective depletion of organic matter in mottled podzol horizons. Soil Biology and Biochemistry 39, 607621.CrossRefGoogle Scholar
Buurman, P., van Bergen, P.F., Jongmans, A.G., Meijer, E.L., Duran, B., van Lagen, B., (2005). Spatial and temporal variation in podzol organic matter studied by pyrolysis-gas chromatography/mass spectrometry and micromorphology. European Journal of Soil Science 56, 253270.CrossRefGoogle Scholar
Buurman, P., Velthorst, E.J., Looyaard, A., Meyer, H.A.J., (1998b). 13C fractionation and organic chemistry in Podzols. 9th conference of the International Humic Substances Society (Adelaide) 53.Google Scholar
Catt, J.A., (1991). Soils as indicators of Quaternary climatic change in mid-latitude regions. Geoderma 51, 167187.CrossRefGoogle Scholar
Chhabra, R., Pleysier, J., Cremers, A., (1975). The measurement of the cation exchange capacity and exchangeable cations in soils: A new method. Proceedings of the International Clay Conference Applied Publishing ltd., Illinois, USA., 439449.Google Scholar
Chlachula, J., Kemp, R.A., Jessen, C.A., Palmer, A.P., Toms, P.S., (2004). Landscape development in response to climatic change during oxygen isotope stage 5 in the southern Siberian loess region. Boreas 33, 164180.CrossRefGoogle Scholar
Dlussky, K.G., (2007). Likhvin interglacial polygenetic palaeosol: A reconstruction on the Russian Plain. Quaternary International 162, 141157.Google Scholar
Driessen, P.M., Dudal, R., (1991). The Major Soils of the World. Agricultural University of Wageningen and Catholic University of Leuven. Wageningen and Leuven.Google Scholar
FAO, , (2006). Guidelines for soil description. 4th ed. FAO, Rome.Google Scholar
FAO, , ISRIC, , ISSS, , (2006). World reference base for soil resources 2006. World Soil Resources Reports vol. 103, FAO, Rome.Google Scholar
Farquhar, G.D., O'Leary, M.H., Berry, J.A., (1982). On the relationship between carbon isotope discrimination and the intercellular carbon dioxide concentration in leaves. Australian Journal of Plant Physiology 9, 121137.Google Scholar
Feng, X., Epstein, S., (1995). Carbon isotopes of trees from arid environments and implications for reconstructing atmospheric CO2 concentration. Geochimica et Cosmochimica Acta 59, 25992608.CrossRefGoogle Scholar
Fisher, H., Wahlen, M., Smith, J., Mastroianni, D., Deck, B., (1999). Ice core records of atmospheric CO2 around the last three glacial terminations. Science 283, 17121714.Google Scholar
Frecken, M., Zander, A., Zykina, V., Boenink, W., (2005). The loess record from the section at Kurtak in Middle Siberia. Palaeogeography, Palaeoclimatology, Palaeoecology 228, 3–4, 228244.Google Scholar
Guiot, J., Pons, A., de Beaulieu, J.L., Reille, M., (1989). A 140.000 year continental climate reconstruction from two European pollen records. Nature 338, 309313.CrossRefGoogle Scholar
Gullentops, F., Bogemans, F., De Moor, G., Paulissen, E., Pissart, A., (2001). Quaternary lithostratigraphic units (Belgium). Geologica Belgica 4/1–2, 153164.Google Scholar
Haesaerts, P., Mestdagh, H., (2000). Pedosedimentary evolution of the last interglacial and early glacial sequence in the European loess belt from Belgium to central Russia. Netherlands Journal of Geosciences 79, 2/3, 313324.Google Scholar
Haesaerts, P., Van Vliet-Lanoë, B., (1981). Phénomènes périglaciaires et sols fossils observés à Masières-Canal, à Harmignies et à Rocourt. Biuletyn Periglacjalny 28, 291324.Google Scholar
Haesaerts, P., Mestdagh, H., Bosquet, D., (1999). The sequence of Remicourt (Hesbaye, Belgium): new insights on the pedo- and chronostratigraphy of the Rocourt soil. Geologica Belgica 2/3, 527.Google Scholar
Hajje, N., Jaffé, R., (2006). Molecular characterization of Cladium peat from the Florida everglades: Biomarker associations with humic fractions. Hydrobiologia 569, 99112.Google Scholar
Hatcher, P.G., Dria, K.J., Kim, S., Frazier, S.W., (2001). Modern analytical studies of humic substances. Soil Science 166, 11, 770794.CrossRefGoogle Scholar
Hatté, C., Guiot, J., (2005). Palaeoprecipitation reconstruction by inverse modeling using the isotopic signal of loess organic matter: Application to the Nussloch loess sequence (Rhine Valley Germany). Climate Dynamics 25, 315327.CrossRefGoogle Scholar
Hatté, C., Antoine, P., Fontugne, M., Lang, A., Rousseau, D.D., Zöller, L., (1999). δ13C of loess organic matter as a potential proxy for palaeoprecipitation. Quaternary Research 55, 3338.CrossRefGoogle Scholar
Hoefs, J., (1997). Stable isotope geochemistry. 4th ed. Springer, Berlin., (201 pp).Google Scholar
Hus, J.J., Geeraerts, R., (1999). Palaeomagnetic and rock magnetic properties of loess–palaeosol sequences in Belgium. Geologica Belgica 2, 8997.CrossRefGoogle Scholar
ISRIC, , FAO, , (2002). Technical paper 9: Procedures for soil analysis. Van Reeuwijk, L.P., 6th ed. ISRIC, Wageningen.Google Scholar
Juvigne, E., (1999). Thephrostratigraphie du Quaternaire en Belgique. Geologica Belgica 2, 7387.CrossRefGoogle Scholar
Kemp, , (2001). Pedogenic modification of loess: Significance for palaeoclimatic reconstructions. Earth-Science Reviews 54, 145156.Google Scholar
Knicker, H., Almendros, G., González-Vila, F.J., González-Pérez, J.A., Polvillo, O., (2006). Characteristic alterations of quantity and quality of soil organic matter caused by forest fires in continental Mediterranean ecosystems: A solid-state 13C NMR study. European Journal of Soil Science 57, 4, 558569.Google Scholar
Kögel-Knaber, I., (2002). The macromolecular organic composition of plant and microbial residues as inputs to soil organic matter. Soil Biology and Biochemistry 34, 139162.CrossRefGoogle Scholar
Kögel-Knabner, I., (2000). Analytical approaches for characterizing soil organic matter. Organic Geochemistry 31, 609625.Google Scholar
Konert, M., Vandenberghe, J., (1997). Comparison of laser grain size analysis with pipette and sieve analysis: A solution for the underestimation of the clay fraction. Sedimentology 44, 523535.CrossRefGoogle Scholar
Mestdagh, H., (2005). Environmental reconstruction of the last interglacial and early glacial period base don soil characteristics of the pedocomplexes on loess at selected sites from the Atlantic Coast to Central Asia. Ph.D. thesis, University of Ghent.Google Scholar
Nierop, K.G.J., Buurman, P., de Leeuw, J.W., (1999). Effects of vegetation on chemical composition of H horizons in incipient podzols as characterized by 13C NMR and pyrolysis-GC/MS. Geoderma 90, 111129.CrossRefGoogle Scholar
Page, D.W., van Leeuwen, J.A., Spark, K.M., Mulcahy, D.E., (2002). Pyrolysis characterisation of plant, humus and soil extracts from Australian catchments. Journal of Analytical and Applied Pyrolysis 65, 269285.Google Scholar
Petit, J.R., Jouzel, J., Raynaud, D., Barkov, N.I., Barnola, J.M., Basile, I., Bender, M., Chappellaz, J., Davis, M., Delaygue, G., Delmotte, M., Kotlyakov, V.M., Legrand, M., Lipenkov, V.Y., Lorius, C., Pépin, L., Ritz, C., Saltzman, E., Stievenard, M., (1999). Climate and atmospheric history of the past 420.000 years from the Vostok ice core, Antarctica. Nature 399, 429436.CrossRefGoogle Scholar
Piccolo, A., (2001). The supra-molecular structure of humic substances. Soil Science 166, 810832.Google Scholar
Ralph, J., Hatfield, R.D., (1991). Pyrolysis-GC/MS characterization of forage materials. Journal of Agricultural and Food Chemistry 39, 14261437.Google Scholar
Retallack, G.J., (1990). Soils of the past: An introduction to paleopedology. Unwin Hyman, Boston., 520 pp.Google Scholar
Saiz-Jimenez, C., (1994). Analytical pyrolysis of humic substances: Pitfalls, limitations and possible solutions. Environmental Science and Technology 28, 17731780.Google Scholar
Saiz-Jimenez, C., (1995). Reactivity of the aliphatic humic moiety in analytical pyrolysis. Organic Geochemistry 23, 955961.Google Scholar
Saiz-Jimenez, C., (1996). The chemical structure of humic substances: Recent advances. Piccolo, A., Humic substances in terrestrial ecosystems. Elsevier Science B.V., Amsterdam.Google Scholar
Saiz-Jimenez, C., de Leeuw, J.W., (1986). Chemical characterization of soil organic matter fractions by analytical pyrolysis–gas chromatography–mass spectrometry. Journal of Analytical and Applied pyrolysis 9, 99119.Google Scholar
Schulten, H.R., Schnitzer, M., (1998). The chemistry of soil organic nitrogen: A review. Biology of Fertile Soils 26, 115.Google Scholar
Targulian, V.O., Goryachkin, S.V., (2004). Soil Memory: Types of record, carriers, hierarchy and diversity. Revista Mexicana de Ciencias Geológicas 21, 1, 19.Google Scholar
Van Bergen, P.F., Bull, I.D., Poulton, P.R., Evershed, R.P., (1997). Organic geochemical studies of soils from the Rothamsted classical experiments: I. Total lipids, solvent insoluble residues and humic acids from the Broadbalk Wilderness. Organic Geochemistry 26, 117135.CrossRefGoogle Scholar
Vandenberghe, J., An, Z.S., Nugteren, G., Lu, H., Van Huissteden, J., (1997). New absolute time scale for the Quaternary climate in the Chinese loess region by grain-size analysis. Geology 25, 1, 3538.2.3.CO;2>CrossRefGoogle Scholar
Van den Haute, P., Frechen, M., Buylaert, J.P., Vandenberghe, D., De Corte, F., (2003). The last interglacial palaeosol in the Belgian loess belt: TL age record. Quaternary Science Reviews 22, 985990.Google Scholar
Vanmonfort, B., Vermeersch, P.M., Groenendijk, A.J., Meijs, E., De Warrimont, J.P., Gullentops, F., (1998). The middle palaeolithic site of Hezerwater at Veldwezelt, Belgian Limburg. Notae Praehistoricae 18, 511.Google Scholar
Van Vliet-Lanoë, B., (1992). Le niveau à langues de Kesselt, horizon repère de la stratgraphique du Weichsélien supérieur européen: Signification paléoenvironmentale et paléoclimatique. Memorie della Societa Geologica France n. s. 160, 3544.Google Scholar
Verbruggen, C., (1999). Quaternary palaeobotanical evolution of Northern Belgium. Geologica Belgica 2/3, 4, 99110.Google Scholar
White, D.M., Garland, D.S., Beyer, L., Yoshikawa, K., (2004). Pyrolysis-GC/MS fingerprinting of environmental samples. Journal of Analytical and Applied Pyrolysis 71, 1, 107118.CrossRefGoogle Scholar
Woillard, G., (1978). Grand pile peat bog: A continuous pollen record for the last 140 000 years. Quaternary Research 9, 121.CrossRefGoogle Scholar