Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-15T00:34:07.821Z Has data issue: false hasContentIssue false

Evolution of the paleo-Daesan Bay (Nakdong River, South Korea) as a result of Holocene sea level change

Published online by Cambridge University Press:  17 May 2022

Jaesoo Lim*
Affiliation:
Quaternary Environment Research Center, Korea Institute of Geoscience and Mineral Resources, Daejeon, 34132, Republic of Korea Korea University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
Sangheon Yi*
Affiliation:
Quaternary Environment Research Center, Korea Institute of Geoscience and Mineral Resources, Daejeon, 34132, Republic of Korea Korea University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
Min Han
Affiliation:
Quaternary Environment Research Center, Korea Institute of Geoscience and Mineral Resources, Daejeon, 34132, Republic of Korea
Sujeong Park
Affiliation:
Department of Marine Sciences and Convergent Technology, Hanyang University Ansan, 15588, Republic of Korea
Youngeun Kim
Affiliation:
Quaternary Environment Research Center, Korea Institute of Geoscience and Mineral Resources, Daejeon, 34132, Republic of Korea Department of Astronomy, Space Science and Geology, Chungnam National University, Daejeon, 34134, Republic of Korea
*
*Corresponding authors email addresses: [email protected], [email protected]
*Corresponding authors email addresses: [email protected], [email protected]

Abstract

To explore sea level transgression in low-lying inland areas and its possible influence on prehistoric cultures, we investigated the physical and geochemical features of 20-m-long sedimentary cores from the previously seawater-filled Daesan Basin located in the middle reach of the present Nakdong River in Korea as proxies for seawater transgression deep inland areas due to Holocene sea level rise. Based on the relationships among grain size, total sulfur content (TS%), and carbon/sulfur (C/S) ratio, the first transgressive event was detected at ca. 8500 cal yr BP, caused by seawater influx along the present Nakdong River. Higher TS% (0.8–1%) and interbedded fossil oysters at 8000–6000 cal yr BP indicate marine environments, supporting a paleo-Daesan Bay with water depth of ~10–8 m. The common peaks in TS%, in both inland paleo-Daesan Bay and a present coastal area (Suncheon Bay) in southern Korea (e.g., at 3200 and 4700 cal yr BP), may indicate intervals of higher salinity, which suggests simultaneous responses to changes in sea level or hydroclimate. The duration of marine environment (paleo-Daesan Bay) in the remote inland from ca. 8000–3200 cal yr BP provides an analog for inland paleo-bay studies in East Asia.

Type
Research Article
Copyright
Copyright © University of Washington. Published by Cambridge University Press, 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abbott, M.B., Stafford, T.W. Jr., 1996. Radiocarbon geochemistry of modern and ancient Arctic lake systems, Baffin Island, Canada. Quaternary Research 45, 300311.CrossRefGoogle Scholar
Alley, R.B., Mayewski, P.A., Sowers, T., Stuiver, M., Taylor, K.C., Clark, P.U., 1997. Holocene climatic instability: a prominent, widespread event 8200 yr ago. Geology 25, 483486.2.3.CO;2>CrossRefGoogle Scholar
Berner, R.A., 1984. Sedimentary pyrite formation: an update. Geochimica et Cosmochimica Acta 48, 605615.CrossRefGoogle Scholar
Berner, R.A., Raiswell, R., 1984. C/S method for distinguishing freshwater from marine sedimentary rocks. Geology 12, 365368.2.0.CO;2>CrossRefGoogle Scholar
Bird, M.I., Fifield, L.K., Teh, T.S., Chang, C.H., Shirlaw, N., Lambeck, K., 2007. An inflection in the rate of early mid-Holocene eustatic sea-level rise: a new sea-level curve from Singapore. Estuarine, Coastal and Shelf Science 71, 523536.CrossRefGoogle Scholar
Blaauw, M., 2010. Methods and code for ‘classical’ age-modelling of radiocarbon sequences. Quaternary Geochronology 5, 512518.CrossRefGoogle Scholar
Bronk Ramsey, C., 2009a. Bayesian analysis of radiocarbon dates. Radiocarbon 51, 337360.CrossRefGoogle Scholar
Bronk Ramsey, C., 2009b. Dealing with outliers and offsets in radiocarbon dating. Radiocarbon 51, 10231045.CrossRefGoogle Scholar
Cho, A., Cheong, D., Kim, J.C., Shin, S., Park, Y.H., Katsuki, K., 2017. Delta formation in the Nakdong River, Korea, during the Holocene as inferred from the diatom assemblage. Journal of Coastal Research 33, 6777.CrossRefGoogle Scholar
Dykoski, C.A., Edwards, R.L., Cheng, H., Yuan, D., Cai, Y., Zhang, M., Lin, Y., Qing, J., An, Z., Revenaugh, J., 2005. A high-resolution, absolute-dated Holocene and deglacial Asian monsoon record from Dongge Cave, China. Earth and Planetary Science Letters 233, 7186.CrossRefGoogle Scholar
Hasegawa, T., Hibino, T., Hori, S., 2010. Indicator of paleosalinity: sedimentary sulfur and organic carbon in the Jurassic–Cretaceous Tetori Group, central Japan. Island Arc 19, 590604.CrossRefGoogle Scholar
Hong, W, Park, J.H., Kim, K.J., Woo, H.J., Kim, J.K., Choi, H.K., Kim, G.D., 2010a. Establishment of chemical preparation methods and development of an automated reduction system for AMS sample preparation at KIGAM. Radiocarbon 52, 12771287.CrossRefGoogle Scholar
Hong, W, Park, J.H., Sung, K.S., Woo, H.J., Kim, J.K., Choi, H.W., Kim, G.D., 2010b. A new1MV AMS facility at KIGAM. Radiocarbon 52, 243251.CrossRefGoogle Scholar
Hori, K., Tanabe, S., Saito, Y., Karuyama, S., Nguyen, V., Kitamura, A., 2004. Delta initiation and Holocene sea-level change: example from the Song Hong (Red River) Delta, Vietnam. Sedimentary Geology 164, 237249.CrossRefGoogle Scholar
Huang, J., Lei, S., Tang, L., Wang, A., Wang, Z., 2020. Mid-Holocene environmental change and human response at the Neolithic Wuguishan site in the Ningbo coastal lowland of East China. The Holocene 30, 15911605.CrossRefGoogle Scholar
Huang, J., Li, Y., Ding, F., Zheng, T., Meadows, M.E., Wang, Z., 2021. Sedimentary records of mid-Holocene coastal flooding at a Neolithic site on the southeast plain of Hangzhou Bay, east China. Marine Geology 431, 106380. https://doi.org/10.1016/j.margeo.2020.106380.CrossRefGoogle Scholar
Hu, C., Henderson, G.M., Huang, J., Xie, S., Sun, Y., Johnson, K.R., 2008. Quantification of Holocene Asian monsoon rainfall from spatially separated cave records. Earth and Planetary Science Letters 266, 221232.CrossRefGoogle Scholar
Hwang, S., Kim, J.Y., Yoon, S.O., 2013. Sea level change during the Middle Holocene at Bibong-ri, Changnyeong-gun, Gyeongsangnam-do, South Korea. Journal of the Korean Geographical Society 48, 837855. [In Korean with English abstract]Google Scholar
Innes, J.B., Zong, Y., Xiong, H., Wang, Z., Chen, Z., 2019. Pollen and non-pollen palynomorph analyses of Upper Holocene sediments from Dianshan, Yangtze coastal lowlands, China: hydrology, vegetation history and human activity. Palaeogeography, Palaeoclimatology, Palaeoecology 523, 3047.CrossRefGoogle Scholar
Ishihara, T., Sugai, T., Hachinohe, S., 2012. Fluvial response to sea-level changes since the latest Pleistocene in the near-coastal lowland, central Kanto Plain, Japan. Geomorphology 147–148, 4960.CrossRefGoogle Scholar
Jaraula, C.M.B., Siringan, F.P., Klingel, R., Sato, H., Yokoyama, Y., 2014. Records and causes of Holocene salinity shifts in Laguna de Bay, Philippines. Quaternary International 349, 207220.CrossRefGoogle Scholar
Kaneko, H., 2008. Animal remains from Changnyeong Bibong-ri Site. In: Gimhae National Museum (Ed.), Bibong-ri Site, Changnyeong: The Neolithic Low-Lying Wetland Site. Report on the Research of Antiquities of the Gimhae National Museum. Vol. 6. Gimhae: Gimhae National Museum Press. p. 305390. [in Korean and Japanese]Google Scholar
Kato, M., Fukusawa, H., Yasuda, Y., 2003. Varved lacustrine sediments of Lake Tougou-ike, western Japan, with reference to Holocene sea-level changes in Japan. Quaternary International 105, 3337.CrossRefGoogle Scholar
Katsuki, K., Nakanishi, T., Lim, J., Nahm, W.H., 2017. Holocene salinity fluctuations of the East Korean lagoon related to sea level and precipitation changes. Island Arc 26, e12214. https://doi.org/10.1111/iar.12214.CrossRefGoogle Scholar
Kendall, R.A., Mitrovica, J.X., Milne, G.A., Törnqvist, T.E., Li, Y., 2008. The sea-level fingerprint of the 8.2 ka climate event. Geology 36, 423426.CrossRefGoogle Scholar
Kigoshi, K., Suzuki, N., Shiraki, M., 1980. Soil dating by fractional extraction of humic acid. Radiocarbon 22, 853857.CrossRefGoogle Scholar
Kim, H., Lee, H., Lee, G.A., 2021. New marine reservoir correction values (ΔR) applicable to dates on Neolithic shells from the south coast of Korea. Radiocarbon 63, 12871302.CrossRefGoogle Scholar
Kim, J.C., Cheong, D., Shin, S., Park, Y.H., Hong, S.S., 2015. OSL chronology and accumulation rate of the Nakdong deltaic sediments, southeastern Korean Peninsula. Quaternary Geochronology 30, 245250.CrossRefGoogle Scholar
Kim, J.C., Eum, C.H., Yi, , Kim, J.Y., Hong, S.S., Lee, J.Y., 2012. Optically stimulated luminescence dating of coastal sediments from southwestern Korea. Quaternary Geochronology 10, 218223.CrossRefGoogle Scholar
Koma, T., Suzuki, Y., 1988. Total sulfur content of late Quaternary sediments in Shibakawa lowland, Saitama Prefecture, central Japan, and its relation to the sedimentary environment. Chemical Geology 68, 221228.CrossRefGoogle Scholar
Kretschmer, W., Anton, G., Bergmann, M., Finckh, E., Kowalzik, B., Klein, M., Leigart, M., et al. , 1997. 14C dating of sediment samples. Nuclear Instruments and Methods in Physics Research B 123, 455459.CrossRefGoogle Scholar
Kwak, S.K., Obata, H., Lee, G.-A., 2020. Broad-spectrum foodways in southern coastal Korea in the Holocene: isotopic and archaeobotanical signatures in Neolithic shell middens. The Journal of Island and Coastal Archaeology 17, 97125.CrossRefGoogle Scholar
Lamb, A., Wilson, G.P., Leng, M.J., 2006. A review of coastal palaeoclimate and relative sea-level reconstructions using δ13C and C/N ratios in organic material. Earth-Science Reviews 75, 2957.CrossRefGoogle Scholar
Lambeck, K., Rouby, H., Purcell, A., Sun, Y., Sambridge, M., 2014. Sea level and global ice volumes from the Last Glacial Maximum to the Holocene. Proceedings of the National Academy of Sciences 111, 1529615303.CrossRefGoogle ScholarPubMed
Li, L., Zhu, C., Qin, Z., Storozum, M.J., Kidder, T.R., 2018. Relative sea level rise, site distributions, and Neolithic settlement in the Early to Middle Holocene, Jiangsu Province, China. The Holocene 28, 354362.CrossRefGoogle Scholar
Lim, J., Lee, J.Y., Hong, S.S., Park, S., Lee, E., Yi, S., 2019. Holocene coastal environmental change and ENSO-driven hydroclimatic variability in East Asia. Quaternary Science Reviews 220, 7586.CrossRefGoogle Scholar
Lim, J., Lee, J.Y., Kim, J.C., Hong, S.S., Yang, D.Y., 2015. Holocene environmental change at the southern coast of Korea based on organic carbon isotope (δ13C) and C/S ratios. Quaternary International 384, 160168.CrossRefGoogle Scholar
Meyers, P.A., 1997. Organic geochemical proxies of palaeoceannographic, palaeolimnologic, and palaeoclimatic processes. Organic Geochemistry 27, 213250.CrossRefGoogle Scholar
Nahm, W.-H., Kim, J.C., Bong, P.-Y., Kim, J.-Y., Yang, D.-Y., Yu, K.-M., 2008. Late Quaternary stratigraphy of the Yeongsan Estuary, Southwestern Korea. Quaternary International 176–177, 1324.CrossRefGoogle Scholar
Nakai, N., Ohta, T., Fujisawa, H., Yoshida, M., 1982. Paleoclimatic and sea-level changes deduced from organic carbon isotope ratios, C/N ratios and pyrite contents of cored sediments from Nagoya Harbor, Japan. The Quaternary Research (Daiyonki-Kenkyu) 21, 169177. [in Japanese]CrossRefGoogle Scholar
Nakanishi, T., Hong, W., Sung, K.S., Lim, J., 2013. Radiocarbon reservoir effect from shell and plant pairs in Holocene sediments around the Yeongsan River in Korea. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 294, 444451.CrossRefGoogle Scholar
Nakanishi, T., Hong, W., Sung, K.S., Sung, K.H., Nakashima, R., 2015. Offsets in radiocarbon ages between plants and shells from same horizons of coastal sediments in Korea. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 361, 670679.CrossRefGoogle Scholar
Nguyen, V.L., Tateishi, M., Kobayashi, I., 1998. Reconstruction of sedimentary environments for Late Pleistocene to Holocene coastal deposits of Lake Kamo, Sado Island, Central Japan. The Quaternary Research 37, 7794.CrossRefGoogle Scholar
Park, J., Park, J., Yi, S., Kim, J.C., Lee, E., Jin, Q., 2018. The 8.2 ka cooling event in coastal East Asia: high-resolution pollen evidence from southwestern Korea. Scientific Reports 8, 12423. https://doi.org/10.1038/s41598-018-31002-7.CrossRefGoogle ScholarPubMed
Reimer, P.J., Bard, E., Bayliss, A., Beck, J.W., Blackwell, P.G., Bronk Ramsey, C., Buck, C., et al. , 2013. IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55, 18691887.CrossRefGoogle Scholar
Sampei, Y., Matsumoto, E., Kamei, T., Tokuoka, T., 1997. Sulfur and organic carbon relationship in sediments from coastal brackish lakes in the Shimane peninsula district, southwest Japan. Geochemical Journal 31, 245262.CrossRefGoogle Scholar
Stanley, D.J., Warne, A.G., 1994. Worldwide initiation of Holocene marine deltas by deceleration of sea level rise. Science 265, 228231.CrossRefGoogle ScholarPubMed
Sun, Q., Liu, Y., Wünnemann, B., Peng, Y., Jiang, X., Deng, L., Chen, J., Li, M., Chen, Z., 2019. Climate as a factor for Neolithic cultural collapses approximately 4000 years BP in China. Earth-Science Reviews 197, 102915. https://doi.org/10.1016/j.earscirev.2019.102915.CrossRefGoogle Scholar
Takata, H., Khim, B.K., Shin, S., Lee, J.Y., Kim, J.C., Katsuki, K., Cheong, D., 2019. Early to Middle Holocene development of the Tsushima Warm Current based on benthic and planktonic foraminifera in the Nakdong River delta (southeast Korea). Quaternary International 519, 183191.CrossRefGoogle Scholar
Tanigawa, K., Hyodo, M., Sato, H., 2013. Holocene relative sea-level change and rate of sea-level rise from coastal deposits in the Toyooka Basin, western Japan. The Holocene 23, 10391051.CrossRefGoogle Scholar
Tan, L., Li, Y., Wang, X., Cai, Y., Lin, F., Cheng, H., Edwards, R.L., 2020. Holocene monsoon change and abrupt events on the western Chinese Loess Plateau as revealed by accurately dated stalagmites. Geophysical Research Letters 47, e2020GL090273. https://doi.org/10.1029/2020GL09027.CrossRefGoogle Scholar
Törnqvist, T.E., Bick, S.J., González, J.L., van der Borg, K., de Jong, A.F., 2004. Tracking the sea-level signature of the 8.2 ka cooling event: new constraints from the Mississippi Delta. Geophysical Research Letters 31, L23309. https://doi.org/10.1029/2004GL021429.CrossRefGoogle Scholar
Woolfe, K.J., Dale, P.J., Brunskill, G.J., 1995. Sedimentary C/S relationships in a large tropical estuary: evidence for refractory carbon inputs from mangroves. Geo-Marine Letters 15, 140144.CrossRefGoogle Scholar
Xiong, H., Zong, Y., Li, T., Long, T., Huang, G., Fu, S., 2020. Coastal GIA processes revealed by the Early to Middle Holocene sea-level history of east China. Quaternary Science Reviews 233, 106249. https://doi.org/10.1016/j.quascirev.2020.106249.CrossRefGoogle Scholar
Yang, D.Y., Kim, J.-Y., Nahm, W.-H., Ryu, E., Yi, S., Kim, J.C., Lee, J.-Y., Kim, J.-K., 2008. Holocene wetland environmental change based on major element concentrations and organic contents from the Cheollipo coast, Korea. Quaternary International 176–177, 143155.CrossRefGoogle Scholar
Yoo, D.G., Kim, S.P., Chang, T.S., Kong, G.S., Kang, N.K., Kwon, Y.K., Park, S.C., 2014. Late Quaternary inner shelf deposits in response to Late Pleistocene–Holocene sea level changes: Nakdong River, SE Korea. Quaternary International 344, 156169.CrossRefGoogle Scholar
Zong, Y., Innes, J.B., Wang, Z., Chen, Z., 2011. Mid-Holocene coastal hydrology and salinity changes in the east Taihu area of the lower Yangtze wetlands, China. Quaternary Research 76, 6982.CrossRefGoogle Scholar