Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-25T13:57:19.081Z Has data issue: false hasContentIssue false

Evidence of a late glacial warming event and early Holocene cooling in the southern Brazilian coastal highlands

Published online by Cambridge University Press:  24 October 2017

Hermann Behling*
Affiliation:
Department of Palynology and Climate Dynamics, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, D-37073 Goettingen, Germany
Marcelo Accioly Teixeira de Oliveira
Affiliation:
Departamento de Geociências, Universidade Federal de Santa Catarina (UFSC), Florianópolis, SC 88040-900, Brazil
*
*Corresponding author at: Department of Palynology and Climate Dynamics, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, D-37073 Goettingen, Germany. E-mail address: [email protected] (H. Behling).

Abstract

A high-resolution pollen record of the Atlantic rain forest (ARF) biome from the coastal Serra do Tabuleiro mountains of southern Brazil documents an 11,960 yr history of vegetation and climate change. A marked expansion of Weinmannia into the grassland vegetation marks the latter part of the Younger Dryas, reflecting warm and relatively wet conditions. Between 11,490 and 9110 cal yr BP, grasslands became dominant again, indicating a long cold and dry phase, probably in response to the stronger influence of cold South Atlantic seawater and to Antarctic cold fronts. Between 9110 and 2640 cal yr BP, four distinct phases with strong or moderate expansions of different ARF biome taxa were recorded, reflecting warmer and relatively dry conditions with changes in rainfall and length of the annual dry season. After 2640 cal yr BP, the modern ARF biome became established with high amounts of ferns, reflecting somewhat cooler and wetter conditions with a reduced annual dry season. In particular, after 1000 cal yr BP tree ferns increased, reflecting wetter conditions with no dry season.

Type
Tribute to Daniel Livingstone and Paul Colinvaux
Copyright
Copyright © University of Washington. Published by Cambridge University Press, 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Barnes, R.W., 1999. Palaeobiogeography, Extinctions and Evolutionary Trends in the Cunoniaceae: A Synthesis of the Fossil Record. PhD dissertation, University of Tasmania, Hobart, Tasmania, Australia.Google Scholar
Barros, V., Gonzalez, M., Liebmann, B., Camilloni, I., 2000. Influence of the South Atlantic convergence zone and South Atlantic Sea surface temperature on inter-annual summer rainfall variability in southeastern South America. Theoretical and Applied Climatology 67: 123133.Google Scholar
Behling, H., 1993. Untersuchungen zur spätpleistozänen und holozänen Vegetations- und Klimageschichte der tropischen Küstenwälder und der Araukarienwälder in Santa Catarina (Südbrasilien). Dissertationes Botanicae 206. Cramer, Berlin.Google Scholar
Behling, H., 1995. Investigations into the Late Pleistocene and Holocene history of vegetation and climate in Santa Catarina (S Brazil). Vegetation History and Archaeobotany 4: 127152.Google Scholar
Behling, H., 1997. Late Quaternary vegetation, climate and fire history in the Araucaria forest and campos region from Serra Campos Gerais, Paraná State (South Brazil). Review of Palaeobotany and Palynology 97: 109121.CrossRefGoogle Scholar
Behling, H., 2002. South and southeast Brazilian grasslands during Late Quaternary times: a synthesis. Palaeogeography, Palaeoclimatology, Palaeoecology 177: 1927.Google Scholar
Behling, H., 2007. Late Quaternary vegetation, fire and climate dynamics of Serra do Araçatuba in the Atlantic coastal mountains of Paraná State, southern Brazil. Vegetation History and Archaeobotany 16: 7785.CrossRefGoogle Scholar
Behling, H., Bauermann, S.G., Neves, P.C., 2001. Holocene environmental changes from the São Francisco de Paula region, southern Brazil. Journal of South American Earth Science 14: 631639.Google Scholar
Behling, H., Negrelle, R.R.B., 2001. Late Quaternary tropical rain forest and climate dynamics from the Atlantic lowland in southern Brazil. Quaternary Research 56: 383389.Google Scholar
Behling, H., Pillar, V., Orlóci, L., Bauermann, S.G., 2004. Late Quaternary Araucaria forest, grassland (campos), fire and climate dynamics, studied by high resolution pollen, charcoal and multivariate analysis of the Cambará do Sul core in southern Brazil. Palaeogeography, Palaeoclimatology, Palaeoecology 203: 277297.Google Scholar
Behling, H., Safford, H.D., 2010. Late-glacial and Holocene vegetation, climate and fire dynamics in the Serra dos Órgãos, Rio de Janeiro State, southeastern Brazil. Global Change Biology 16: 16611666.Google Scholar
Bush, M.B., Silman, M.R., 2004. Observations on Late Pleistocene cooling and precipitation in the lowland Neotropics. Journal of Quaternary Science 19: 677684.Google Scholar
Chiessi, C.M., Mulitza, S., Mollenhauer, G., Silva, J.B., Groeneveld, J., Prange, M., 2015. Thermal evolution of the western South Atlantic and the adjacent continent during Termination 1. Climate of the Past 11: 915929.Google Scholar
Cruz, F.W. Jr., Burns, S.J., Jercinovic, M., Karmann, I., Sharp, W.D., Vuille, M., 2007. Evidence of rainfall variations in southern Brazil from trace element ratios (Mg/Ca and Sr/Ca) in a Late Pleistocene stalagmite. Geochemica et Cosmochimica Acta 71: 22502263.Google Scholar
Cruz, F.W. Jr., Burns, S.J., Karmann, I., Sharp, W.D., Vuille, M., Cardoso, A.O., Ferrari, J.A., Silva Dias, P.L., Viana, O. Jr., 2005. Insolation-driven changes in atmospheric circulation over the past 116,000 years in subtropical Brazil. Nature 434: 6366.Google Scholar
Cruz, F.W. Jr., Burns, S.J., Karmann, I., Sharp, W.D., Vuille, M., Ferrari, J.A., 2006. A stalagmite record of changes in atmospheric circulation and soil processes in the Brazilian subtropics during the Late Pleistocene. Quaternary Science Reviews 25: 27492761.Google Scholar
Cruz, F.W. Jr., Vuille, M., Burns, S.J., Wang, X., Cheng, H., Werner, M., Edwards, R.L., Karmann, I., Auler, A.S., Nguyen, H., 2009. Orbitally driven east-west anti-phasing of South American precipitation. Nature Geoscience 2: 210214.Google Scholar
Cuatrecasas, J., Smith, L.B., 1971. Cunoniáceas. Flora Ilustrada Catarinense. Herbário “Barbosa Rodrigues,”, Itajaí, Santa Catarina, Brazil.Google Scholar
Díaz, A.F., Studzinski, C.D., Mechoso, C.R., 1998. Relationships between precipitation anomalies in Uruguay and southern Brazil and Sea surface temperature in the Pacific and Atlantic Oceans. Journal of Climate 11: 251271.Google Scholar
Faegri, K., Iversen, J., 1989. Textbook of Pollen Analysis. 4th ed. Wiley, Chichester, UK.Google Scholar
Foster, P., 2001. The potential negative impacts of global climate change on tropical montane cloud forests. Earth-Science Reviews 55: 73106.Google Scholar
Fundação Instituto Brasileiro de Geografia e Estatística (IBGE). 1993. Mapa de Vegetação do Brasil. Secretaria de Planejamento, Orçamento e Coordenação da Presidência da República, IBGE, Rio de Janeiro, Brazil.Google Scholar
Garreaud, R.D., Vuille, M., Compagnucci, R., Marengo, J., 2009. Present-day South American climate. Palaeogeography, Palaeoclimatology, Palaeoecology 281: 180195.Google Scholar
Grimm, E.C., 1987. CONISS: a Fortran 77 program for stratigraphically constrained cluster analysis by the method of the incremental sum of squares. Computer and Geosciences 13: 1335.Google Scholar
Hastenrath, S., 1991. Climate Dynamics of the Tropics. Kluwer Academic, Dordrecht, the Netherlands.CrossRefGoogle Scholar
Hendry, K.R., Robinson, L.F., Meredith, M.P., Mulitza, S., Chiessi, C.M., Arz, H.W., 2012. Abrupt changes in high-latitude nutrient supply to the Atlantic during the last glacial cycle. Geology 40: 123126.Google Scholar
Herrmann, M.L.P., 2014. Atlas de desastres naturais do estado de Santa Catarina: período de 1980 a 2010. 2nd ed. IHGSC/Cadernos Geográficos, Florianópolis, Santa Catarina, Brazil.Google Scholar
Hueck, K., 1966. Die Wälder Südamerikas. Fischer, Stuttgart, Germany.Google Scholar
Jeske-Pieruschka, V., Behling, H., 2012. Palaeoenvironmental history of the São Francisco de Paula region in southern Brazil during the late Quaternary inferred from the Rincão das Cabritas core. Holocene 22: 12511562.Google Scholar
Jeske-Pieruschka, V., Pillar, V.D., Behling, H., 2013. New insights into vegetation, climate and fire history of southern Brazil revealed by a 40,000 years-old environmental record from the State Park Serra do Tabuleiro. Vegetation History and Archaeobotany 22: 299314.Google Scholar
Klein, R.M., 1978. Mapa fitogeográfico do estado de Santa Catarina. Flora Ilustrada Catarinense. Herbário “Barbosa Rodrigues,”, Itajaí, Santa Catarina, Brazil.Google Scholar
Klein, R.M., 1981. Fisionomia, importancia e recursos da vegetação do Parque Estadual da Serra do Tabuleiro. Sellowia 33: 554.Google Scholar
Ledru, M.-P., Mourguiart, P., Riccomini, C., 2009. Related changes in biodiversity, insolation and climate in the Atlantic rainforest since the last interglacial. Palaeogeography, Palaeoclimatology, Palaeoecology 271: 140152.CrossRefGoogle Scholar
Leonhardt, A., Lorscheitter, M.L., 2010. The last 25,000 years in the eastern plateau of southern Brazil according to Alpes de São Francisco record. Journal of South American Earth Science 29: 454463.Google Scholar
Martin, L., Fournier, M., Mourguiart, P., Siefeddine, A., Turcq, B., 1993. Southern Oscillation signal in South American palaeoclimatic data of the last 7000 years. Quaternary Research 39: 338346.Google Scholar
McGlone, M.S., Kershaw, A.P., Markgraf, V., 1992. El Niño/Southern Oscillation climatic variability in Australasian and South American paleoenvironmental records. In Diaz, H.F., Markgraf, V. (Eds.), El Niño: Historical and Paleoclimatic Aspects of the Southern Oscillation. Cambridge University Press, Cambridge, pp. 435462.Google Scholar
Myers, N., Mittermeier, R.A., Mittermeier, C.G., da Fonseca, G.A.B., Kent, J., 2000. Biodiversity hotspots for conservation priorities. Nature 403: 853858.Google Scholar
Nimer, E., 1989. Climatologia do Brasil. Fundação Instituto Brasileiro de Geografia e Estatística (IBGE), Rio de Janeiro, Brazil.Google Scholar
Oliveira, M.A.T., Lima, G.L., 2008. Avaliação de geomorfosítios e valorização de turfeiras de planalto no Parque Estadual da Serra do Tabuleiro – SC. Geosul 23: 137162.Google Scholar
Oliveira, M.A.T., Porsani, J.L., Lima, G.L., Jeske-Pieruschka, V., Behling, H., 2012. Upper Pleistocene to Holocene peatland evolution in southern Brazilian highlands as depicted by radar stratigraphy, sedimentology and palynology. Quaternary Research 7: 397407.Google Scholar
Ratisbona, L.R., 1976. The climate of Brazil. In: Schwerdtfeger, W. (Ed.), World Survey of Climatology Vol. 12, Climates of Central and South America Elsevier, Amsterdam, pp. 219293.Google Scholar
Razik, S., Chiessi, C.M., Romero, O.E., von Dobeneck, T., 2013. Interaction of the South American Monsoon System and the Southern Westerly Wind Belt during the last 14kyr. Palaeogeography, Palaeoclimatology, Palaeoecology 374: 2840.Google Scholar
Roe, G.H., 2005. Orographic precipitation. Annual Review of Earth and Planetary Science 33: 645671.Google Scholar
Rühlemann, C., Mulitza, S., Müller, P.J., Wefer, G., Zahn, R., 1999. Warming of the tropical Atlantic Ocean and slowdown of thermohaline circulation during the last deglaciation. Nature 402: 511514.Google Scholar
Shakun, J.D., Clark, P.U., He, F., Marcott, S.A., Mix, A.C., Liu, Z., Schmittner, A., Bard, E., 2012. Global warming preceded by increasing carbon dioxide concentrations during the last deglaciation. Nature 484: 4954.Google Scholar
Souza, R.B., Robinson, I.S., 2004. Lagrangian and satellite observations of the Brazilian Coastal Current. Continental Shelf Research 24: 241262.Google Scholar
Walker, M.J.C., Berkelhammer, M., Björck, S., Cwynar, L.C., Fisher, D.A., Long, A.J., Lowe, J.J., Newnham, R.M., Rasmussen, S.O., Weiss, H., 2012. Formal subdivision of the Holocene Series/Epoch: a discussion paper by a Working Group of INTIMATE (Integration of ice-core, marine and terrestrial records) and the Subcommission on Quaternary Stratigraphy (International Commission on Stratigraphy). Journal of Quaternary Science 27: 649659.Google Scholar
Wang, X., Auler, A.S., Edwards, R.L., Cheng, H., Ito, E., Wang, Y., Kong, X., Solheid, M., 2007. Millennial-scale precipitation changes in southern Brazil over the past 90,000 years. Geophysical Research Letters 34: L23701. http://dx.doi.org/10.1029/2007GL031149.Google Scholar
Weninger, B., Jöris, O., Danzeglocke, U., 2004. CalPal: The Cologne Radiocarbon Calibration and Palaeoclimate Research Package. Monrepos, Schloss Monrepos, Neuwied, Germany. http://www.calpal.de (accessed December 12, 2016).Google Scholar