Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-24T17:44:48.111Z Has data issue: false hasContentIssue false

Evidence for large-amplitude biome and climate changes in Atlantic Canada during the last interglacial and mid-Wisconsinan periods

Published online by Cambridge University Press:  20 January 2017

Abstract

Last interglacial and mid Wisconsinan pollen data from sedimentary sequences of Cape Breton Island in Atlantic Canada were analyzed to reconstruct biome and climate conditions. Our results show warm and humid climate with mean annual temperature 6–7°C higher than today, up to 15–20% more sunshine and significantly longer growing season that fostered growth of temperate trees during the optimum of the last interglacial. The northern limit of the deciduous forest biome was then about 500 km north of its modern limit. Towards the end of the interglacial the deciduous forest was replaced by conifer/hardwood forest and boreal forest. Climate was then similar to modern. The transition from interglacial to glacial was marked by a change towards coniferous forest related to colder and dryer conditions. During the mid Wisconsinan, the development of forest tundra to boreal forest reflects migration of the Arctic Front and significant cooling with mean annual temperature anomalies of − 8 to − 12°C. The overall time series reflect large amplitude climate changes that point to high sensitivity of the southeastern Canadian margins, likely as a response to latitudinal shifts of the Gulf Stream and variable strength of the Labrador Current together with changes in large-scale atmospheric circulation pattern.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allen, J.R.M., and Huntley, B. Last Interglacial palaeovegetation, palaeoenvironments and chronology: a new record from Lago Grande di Monticchio, southern Italy. Quaternary Science Reviews 28, (2009). 15211538.Google Scholar
Allen, J.R.M., Watts, W.A., and Huntley, B. Weichselian palynostratigraphy, palaeovegetation and palaeoenvironment: the record from Lago Grande di Monticchio, southern Italy. Quaternary International 73, 74 (2000). 91110.CrossRefGoogle Scholar
Bartlein, P.J., Harrison, S.P., Brewer, S., Connor, S., Davis, B.A.S., Gajewski, K., Guiot, J., Harrison-Prentice, T.I., Henderson, A., Peyron, O., Prentice, I.C., Scholze, M., Seppä, H., Shuman, B., Sugita, S., Thompson, R.S., Viau, A.E., Williams, J., and Wu, H. Pollen-based continental climate reconstructions at 6 and 21 ka: a global synthesis. Climate Dynamics (2010). http://dx.doi.org/10.1007/s00382-010-0904-1Google Scholar
Berger, A.L. Long-term variations of caloric insolation resulting from the Earth's orbital elements. Quaternary Research 9, (1978). 139167.CrossRefGoogle Scholar
CAPE Last Interglacial Project Members Last Interglacial Arctic warmth confirms polar amplification of climate change. Quaternary Science Reviews 25, (2006). 13831400.CrossRefGoogle Scholar
Cortijo, E., Labeyrie, L., Vidal, L., Vautravers, M., Chapman, M., Duplessy, J.-C., Elliot, M., Arnold, M., Turon, J.-T., and Auffret, G. Changes in sea surface hydrology associated with Heinrich event 4 in the North Atlantic Ocean between 40° and 60°N. Earth and Planetary Science Letters 146, (1997). 2945.CrossRefGoogle Scholar
Dansgaard, W., Johnsen, S., Clausen, H., Dahl-Jensen, D., Gundestrup, N., Hammer, C., and Oeschger, H. North Atlantic climatic oscillations revealed by deep Greenland ice cores. Hansen, J.E., and Takahashi, T. Climate Processes and Climate Sensitivity. Geophysical Monograph Serie 29, (1984). AGU, Washington, D.C.. 288298.Google Scholar
Dansgaard, W., Johnsen, S.J., Clausen, H.B., Dahl-Jensen, D., Gundestrup, N.S., Hammer, C.U., Hvidberg, C.S., Steffensen, J.P., Sveinbjörnsdottir, A.E., Jouzel, J., and Bond, G. Evidence for general instability of past climate from a 250-kyr ice-core record. Nature 364, (1993). 218220.Google Scholar
de Beaulieu, J.L., and Reille, M. A long Upper Pleistocene pollen record from Les Echets, near Lyon, France. Boreas 13, (1984). 111132.Google Scholar
de Beaulieu, J.L., and Reille, M. Long Pleistocene polen sequences from the Velay Plateau (Massif Central, France). Vegetation History and Archaeobotany 1, (1992). 233242.Google Scholar
de Boeck, H.J., and Verbeeck, H. Drought-associated changes in climate and their relevance for ecosystem experiments and models. Biogeosciences 8, (2011). 11211130.Google Scholar
de Vernal, A., and Hillaire-Marcel, C. Natural variability of Greenland climate, vegetation, and ice volume during the past million years. Science 320, (2008). 16221625.CrossRefGoogle ScholarPubMed
de Vernal, A., and Mott, R.J. Palynostratigraphie et paléoenvironnements du Pléistocene supérieur dans la region du lac Bras d'Or, ile du Cap-Breton, Nouvelle-Écosse. Canadian Journal of Earth Sciences 23, (1986). 491503.CrossRefGoogle Scholar
de Vernal, A., Lortie, G., Larouche, A., Scott, D.B., and Richard, P.J.H. Évolution d' un milieu littoral et remontée du niveau relatif de la mer à l'Holocène supérieur au nord de l'ile du Cap-Breton, Nouvelle-Écosse. Canadian Journal of Earth Sciences 22, (1985). 315323.Google Scholar
de Vernal, A., Causse, C., Hillaire-Marcel, C., Mott, R.J., and Occhietti, S. Palynostratigraphy and Th/U ages of upper Pleistocene interglacial and interstadial deposits on Cape Breton Island, eastern Canada. Geology 14, (1986). 554557.Google Scholar
Dombroskie, S., McKendy, M., Ruelland, C., Richards, W., Bourque, C.P.-A., and Meng, F.-R. Assessing impact of projected future climate on tree species growth and yield: development of an evaluation strategy. Mitigation and Adaptation Strategies for Global Change 15, (2010). 307320.Google Scholar
Dyke, A.S. Late Quaternary vegetation history of northern North America based on pollen, macrofossil and faunal remains. Géographie Physique et Quaternaire 59, (2005). 211262.CrossRefGoogle Scholar
Elliot, M., Labeyrie, L., and Duplessy, J.-C. Changes in North Atlantic deep-water formation associated with the Dansgaard–Oeschger temperature oscillations (60–10 ka). Quaternary Science Reviews 21, (2002). 11531165.Google Scholar
Fedorova, I.T., Volkova, Y.A., and Varlyguin, E. World vegetation cover. Digital raster data on a 30-minute cartesian orthonormal geodetic (lat/long) 1080_2160 grid. Global Ecosystems Database Version 2.0. (1994). USDOC/NOAA National Geophysical Data Center, Boulder, CO.Google Scholar
Felis, T., Lohmann, G., Kuhnert, H., Lorenz, S.J., Scholz, D., Pätzold, J., Al-Rousan, S.A., and Al-Moghrabi, S.M. Increased seasonality in Middle East temperatures during the last interglacial period. Nature 429, (2004). 164168.Google Scholar
Fletcher, W.J., Sánchez Goñi, M.F., Allen, J.R.M., Cheddadi, R., Combourieu-Nebout, N., Huntley, B., Lawson, I., Londeix, L., Magri, D., Margari, V., Müller, U.C., Naughton, F., Novenko, E., Roucoux, K., and Tzedakis, P.C. Millennial-scale variability during the last glacial in vegetation records from Europe. Quaternary Science Reviews 29, (2010). 28392864.Google Scholar
Frankignoul, C., de Coëtlogon, G., Joyce, T.M., and Dong, S. Gulf Stream variability and ocean–atmosphere interactions. Journal of Physical Oceanography 31, (2001). 35163529.Google Scholar
Fréchette, B., de Vernal, A., Guiot, J., Wolfe, A.P., Miller, G.H., Fredskild, B., Kerwin, M.W., and Richard, P.J.H. Methodological basis for quantitative reconstruction of air temperature and sunshine from pollen assemblages in Arctic Canada and Greenland. Quaternary Science Reviews 27, (2008). 11971216.Google Scholar
Fuhrer, K., Wolff, E.W., and Johnsem, S.J. Timescales for dust variability in the Greenland Ice Core Project (GRIP) ice core in the last 100,000 years. Journal of Geophysical Research 104, (1999). 3104331052.Google Scholar
Gauch, H.G. Jr. Multivariate Analysis in Community Ecology. (1982). Elsevier Inc., Cambridge. (298 pp.)Google Scholar
Genty, D., Combourieu-Nebout, N., Peyron, O., Blamart, D., Wainer, K., Mansuri, F., Ghaleb, B., Isabello, L., Dormoy, I., von Grafenstein, U., Bonelli, S., Landais, A., and Brauer, A. Isotopic characterization of rapid climatic events during OIS3 and OIS4 in Villars Cave stalagmites (SW-France) and correlation with Atlantic and Mediterranean pollen records. Quaternary Science Reviews 29, (2010). 27992820.Google Scholar
Goldblum, D., and Rigg, L.S. The deciduous forest — boreal forest ecotone. Geography Compass 4, (2010). 701717.Google Scholar
Grigg, L.D., and Whitlock, C. Patterns and causes of millennial-scale climate change in the Pacific Northwest during Marine Isotope Stages 2 and 3. Quaternary Science Reviews 21, (2002). 20672083.Google Scholar
Grigg, L.D., Whitlock, C., and Dean, W.E. Evidence for millennial-scale climate change during Marine Isotope Stages 2 and 3 at Little Lake, Western Oregon, U.S.A.. Quaternary Research 56, (2001). 1022.Google Scholar
Grimm, E.C., Jacobson, G.L., Watts, W.A., Hansen, B.C.S., and Maasch, K.A. A 50,000-year record of climate oscillations from Florida and its temporal correlation with Heinrich events. Science 261, (1993). 198200.Google Scholar
Grimm, E.C., Watts, W.A., Jacobson, G.L. Jr., Hansen, B.C.S., Almquist, H.R., and Dieffenbacher-Krall, A.C. Evidence for warm wet Heinrich events in Florida. Quaternary Science Reviews 25, (2006). 21952211.Google Scholar
Guiot, J., Pons, A., de Beaulieu, J.L., and Reille, M. A 140,000-year continental climate reconstruction from two European pollen records. Nature 338, (1989). 309313.Google Scholar
Guiot, J., de Beaulieu, J.L., Cheddadi, R., David, F., Ponel, P., and Reille, M. The climate in Western Europe during the last Glacial/Interglacial cycle derived from pollen and insect remains. Palaeogeography, Palaeoclimatology, Palaeoecology 103, (1993). 7393.Google Scholar
Harrison, S.P., Prentice, I.C., Barboni, D., Kohfeld, K.E., Ni, J., and Sutra, J.-P. Ecophysiological and bioclimatic foundations for a global plant functional classification. Journal of Vegetation Science 21, (2010). 300317.Google Scholar
Heinrich, H. Origin and consequences of cyclic ice rafting in the northeast Atlantic ocean during the past 130,000 years. Quaternary Research 29, (1988). 142152.CrossRefGoogle Scholar
Heusser, L., and Oppo, D. Millennial- and orbital-scale climate variability in southeastern United States and in the subtropical Atlantic during Marine Isotope Stage 5: evidence from pollen and isotopes in ODP Site 1059. Earth and Planetary Science Letters 214, (2003). 483490.Google Scholar
Hurrell, J.W. Decadal trends in the North Atlantic Oscillation: regional temperatures and precipitation. Science 269, (1995). 676679.CrossRefGoogle ScholarPubMed
Jiménez-Moreno, G., Anderson, R.S., and Fawcett, P.J. Orbital- and millennial-scale vegetation and climate changes of the past 225 ka from Bear Lake, Utah–Idaho (USA). Quaternary Science Reviews 26, (2007). 17131724.Google Scholar
Jiménez-Moreno, G., Anderson, R.S., Desprat, S., Grigg, L.D., Grimm, E.C., Heusser, L.E., Jacobs, B.F., López-Martínez, C., Whitlock, C.L., and Willard, D.A. Millenial-scale variability during the last glacial in vegetation records from North America. Quaternary Science Reviews 29, (2010). 28652881.CrossRefGoogle Scholar
Jouzel, J., Stiévenard, M., Johnsen, S.J., Landais, A., Masson-Delmotte, V., Sveinbjornsdottir, A., Vimeux, F., von Grafenstein, U., and White, J.W. Cé The GRIP deuterium-excess record. Quaternary Science Reviews 26, (2007). 117.Google Scholar
Kwon, Y.-O., Alexander, M.A., Bond, N.A., Frankignoul, C., Nakamura, H., Qiu, B., and Thompson, L. Role of the Gulf Stream and Kuroshio–Oyashio systems in large-scale atmosphere–ocean interaction: a review. Journal of Climate 23, (2010). 32493281.CrossRefGoogle Scholar
LaFontaine, C.V., Bryson, R.A., and Wendland, W.M. Airstream regions of North Africa and the Mediterraneab. Journal of Climate 3, (1990). 366372.2.0.CO;2>CrossRefGoogle Scholar
Livingstone, D.A. Some interstadial and postglacial pollen diagrams from eastern Canada. Ecological Monographs 38, (1968). 87125.Google Scholar
Loo, J., and Ives, N. The Acadian forest: historical condition and human impacts. The Forestry Chronicle 79, (2003). 462474.Google Scholar
Masson-Delmotte, V., Jouzel, J., Landais, A., Stiévenard, M., Johnsen, S.J., White, J.W.C., Werner, M., Sveinbjornsdottir, A., and Fuhrer, K. GRIP deuterium excess reveals rapid and orbital changes of Greenland moisture origin. Science 309, (2005). 118121.Google Scholar
Mayewski, P.A., Meeker, L.D., Twickler, M.S., Whitlow, S., Yang, Q., Lyons, W.B., and Prentice, M. Major features and forcing of high-latitude northern hemisphere atmospheric circulation using a 110,00-year-long glaciochemical series. Journal of Geophysical Research 102, (1997). 2634526366.Google Scholar
Mott, R.J., and Grant, D.R. Pre-Late Wisconsinan paleoenvironments in Atlantic Canada. Géographie Physique et Quaternaire 39, (1985). 239254.Google Scholar
Nakamura, H., Sampe, T., Goto, A., Ohfuchi, W., and Xie, S.-P. On the importance of midlatitude oceanic frontal zones for the mean state and dominant variability in the tropospheric circulation. Geophysical Research Letters 35, (2008). L15709 http://dx.doi.org/10.1029/2008GL034010Google Scholar
Overpeck, J.T., Webb, T. III, and Prentice, I.C. Quantitative interpretation of fossil pollen spectra: dissimilarity coefficients and the method of modern analogs. Quaternary Research 23, (1985). 87108.Google Scholar
Penaud, A., Eynaud, F., Sánchez-Goñi, M.F., Malaizé, B., Turon, J.L., and Rossignol, L. Contrasting sea-surface responses between the western Mediterranean Sea and eastern subtropical latitudes of the North Atlantic during abrupt climatic events of MIS 3. Marine Micropaleontology 80, (2011). 1117.Google Scholar
Pickart, R.S., McKee, T.K., Torres, D.J., and Harrington, S.A. Mean structure and interannual variability of the Slopewater system south of Newfoundland. Journal of Physical Oceanography 29, (1999). 25412558.Google Scholar
Prentice, I.C., Cramer, W., Harrison, S.P., Leemans, R., Monserud, R.A., and Solomon, A.M. A global biome model based on plant physiology and dominance, soil properties and climate. Journal of Biogeography 19, (1992). 117134.Google Scholar
Railton, J.B., (1973). Vegetational and climatic history of southwestern Nova Scotia in relation to a South Mountain ice cap. Dissertation, Dalhousie University, Halifax, Nova Scotia.Google Scholar
Rodríguez-Rajo, F.J., Méndez, J., and Jato, V. Factors affecting pollination ecology of Quercus anemophilous species in north-west Spain. Botanical Journal of the Linnean Society 149, (2005). 283297.Google Scholar
Rossby, T., and Benway, R.L. Slow variations in mean path of the Gulf Stream east of Cape Hatteras. Geophysical Research Letters 27, (2000). 117120.Google Scholar
Rousseau, D.D., Hatt, Ch, Guiot, J., Duzer, D., Schevin, P., and Kukla, G. Reconstruction of the Grande Pile Eemian using inverse modeling of biome and δ13C. Quaternary Science Reviews 25, (2006). 28062819.Google Scholar
Ruddiman, W.F., and McIntyre, A. Oceanic mechanisms for amplification of the 23,000-year ice-volume clycle. Science 212, (1981). 617627.Google Scholar
Sanchez-Lorenzo, A., Calbó, J., Brunetti, M., and Deser, C. Dimming/brightening over the Iberian Peninsula: trends in sunshine duration and cloud cover and their relations with atmospheric circulation. Journal of Geophysical Research 114, (2009). D00D09 http://dx.doi.org/10.1029/2008JD011394Google Scholar
Saurer, M., Kress, A., Leuenberger, M., Rinne, K.T., Treydte, K.S., and Siegwolf, R.T.W. Influence of atmospheric circulation patterns on the oxygen isotope ratio of tree rings in the Alpine region. Journal of Geophysical Research 117, (2012). D05118 http://dx.doi.org/10.1029/2011JD016861Google Scholar
Strey, S.T., Chapman, W.L., and Walsh, J.E. The 2007 sea ice minimum: Impacts on the Northern Hemisphere atmosphere in late autumn and early winter. Journal of Geophysical Research 115, (2010). D23103 http://dx.doi.org/10.1029/2009JD013294Google Scholar
ter Braak, C.J.F., and Prentice, I.C. A theory of gradient analysis. Advances in Ecological Research 18, (1988). 271317.Google Scholar
ter Braak, C.J.F., and Šmilauer, P. CANOCO for Windows: Software for Canonical Community Ordination (version 4). (1998). Microcomputer Power, Ithaca, NY, USA.Google Scholar
ter Braak, C.J.F., and Verdonschot, P.F.M. Canonical correspondence analysis and related multivariate methods in aquatic ecology. Aquatic Sciences 57, (1995). 255289.Google Scholar
Thompson, D.W.J., and Wallace, J.M. Regional climate impacts of the Northern Hemisphere annular mode. Science 293, (2001). 8589.Google Scholar
Waelbroeck, C., Labeyrie, L., Michel, E., Duplessya, J.C., McManus, J.F., Lambeck, K., Balbon, E., and Labracherie, M. Sea-level and deep water temperature changes derived from benthic foraminifera isotopic records. Quaternary Science Reviews 21, (2002). 295305.Google Scholar
Watts, W.A. Postglacial and interglacial vegetation history of southern Georgia and central Florida. Ecology 52, (1971). 676690.Google Scholar
Whitlock, C., and Bartlein, P.J. Vegetation and climate change in northwest America during the past 125 kyr. Nature 388, (1997). 5761.Google Scholar
Whitmore, J., Gajewski, K., Sawada, M., Williams, J.W., Shuman, B., Bartlein, P.J., Minckley, T., Viau, A.E., Webb, T. III, Shafer, S., Anderson, P., and Brubaker, L. Modern pollen data from North America and Greenland for multi-scale paleoenvironmental applications. Quaternary Science Reviews 24, (2005). 18281848.Google Scholar
Wohlfarth, B., Veres, D., Ampel, L., Lacourse, T., Blaauw, M., Preusser, F., Andrieu-Ponel, V., Kéravis, D., Lallier-Vergès, E., Björck, S., Davies, S.M., de Beaulieu, J.-L., Risberg, J., hormes, A., Kasper, H.U., Possnert, G., Reille, M., Thouveny, N., and Zander, A. Rapid ecosystem response to abrupt climate changes during the last glacial period in western Europe, 40–16 ka. Geology 36, (2008). 407410.Google Scholar
Woolfenden, W.B. A 180,000-year pollen record from Owens Lake, CA: terrestrial vegetation change on orbital scales. Quaternary Research 59, (2003). 430444.Google Scholar
Young, G.S., and Sikora, T.D. Mesoscale stratocumulus bands caused by Gulf Stream meanders. Monthly Weather Review 131, (2003). 21772191.Google Scholar
Supplementary material: PDF

Fréchette and de Vernal Supplementary Material

Supplementary Material

Download Fréchette and de Vernal Supplementary Material(PDF)
PDF 1.4 MB