Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-19T10:40:31.832Z Has data issue: false hasContentIssue false

Evidence for a warmer period during the 12th and 13th centuries AD from chironomid assemblages in Southampton Island, Nunavut, Canada

Published online by Cambridge University Press:  20 January 2017

Nicolas Rolland*
Affiliation:
Institut National de la Recherche Scientifique (INRS): Eau, Terre et Environnement (ETE), 490 de la Couronne, Québec (Qc), Canada G1K 9A9 Centre d'Études Nordiques, Laboratoire de Paléoécologie Aquatique, Université Laval, Québec (Qc), Canada G1V 0A6
Isabelle Larocque
Affiliation:
Institut National de la Recherche Scientifique (INRS): Eau, Terre et Environnement (ETE), 490 de la Couronne, Québec (Qc), Canada G1K 9A9 Oeschger Center, Institute of Geography, University of Bern, Zähringerstrasse 25, CH 3013 Bern, Switzerland
Pierre Francus
Affiliation:
Institut National de la Recherche Scientifique (INRS): Eau, Terre et Environnement (ETE), 490 de la Couronne, Québec (Qc), Canada G1K 9A9 Centre d'Études Nordiques, Laboratoire de Paléoécologie Aquatique, Université Laval, Québec (Qc), Canada G1V 0A6
Reinhard Pienitz
Affiliation:
Centre d'Études Nordiques, Laboratoire de Paléoécologie Aquatique, Université Laval, Québec (Qc), Canada G1V 0A6
Laurence Laperrière
Affiliation:
Centre d'Études Nordiques, Laboratoire de Paléoécologie Aquatique, Université Laval, Québec (Qc), Canada G1V 0A6
*
Corresponding author. Centre d'Études Nordiques, Laboratoire de Paléoécologie Aquatique, Université Laval, Pavillon Abitibi-Price, local 1206, Québec, Qc, G1V 0A6, Canada.

E-mail address: [email protected] (N. Rolland)

Abstract

This study presents the Late-Holocene evolution of a northern Southampton Island (Nunavut, Canada) lake, using fossil chironomids supported by sedimentological evidences (XRF, grain size and CNS). All proxies revealed a relatively stable environment during the last millennium with short-lived events driving changes in the entire lake ecosystem. The chironomid-based paleotemperatures revealed variations of significant amplitude coincident with changes in the sediment density and chemical composition of the core. Higher temperature intervals were generally correlated to lower sediment density with higher chironomid concentration and diversity. Higher temperatures were recorded from cal yr AD 1160 to AD 1360, which may correspond to the Medieval Warm Period. Between cal yr AD 1360 and AD 1700, lower temperatures were probably related to a Little Ice Age event. This study presents new information on the timing of known climatic events which will refine our knowledge of the paleoclimate and climatic models of the Foxe Basin region. It also provides a new framework for the evolution of such freshwater ecosystems under the “Anthropocene” and underlines the importance of including sedimentological proxies when interpreting chironomid remains as this combined approach provides an extended overview of the past hydrological and geochemical changes and their impacts on lake biota.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

ACIA Arctic Climate Impact Assessment. (2005). Cambridge University Press, 1042 pp Google Scholar
Ammann, B., Birks, H.J.B., Brooks, S.J., Eicher, U., von Grafenstein, U., Hofmann, W., Lemdahl, G., Schwander, J., Tobolski, K., and Wick, L. Quantification of biotic responses to rapid climatic change around the Younger Dryas: a synthesis. Palaeogeography, Palaeoclimatology, Palaeoecology 159, (2000). 313347.Google Scholar
Antoniades, D., Douglas, M.S.V., and Smol, J.P. Quantitative estimates of recent environmental changes in the Canadian High Arctic inferred from diatoms in lake and pond sediments. Journal of Paleolimnology 33, (2005). 349360.Google Scholar
Armitage, P.D. Behaviour and ecology of adults. Armitage, P.D., Cranston, P.S., and Pinder, L.C.V. The Chironomidae: The Biology and Ecology of Non-Bitting Midges. (1995). Chapman & Hall, 194224.Google Scholar
Barley, E.M., Walker, I.R., Kurek, J., Cwynar, L.C., Mathewes, R.W., Gajewski, K., and Finney, B.P. A northwest North American training set: distribution of freshwater midges in relation to air temperature and lake depth. Journal of Paleolimnology 36, (2006). 295314.Google Scholar
Bedford, A., Jones, R.T., Lang, B., Brooks, S.J., and Marshall, J.D. A Late-glacial chironomid record from Hawes Water, northwest England. Journal of Quaternary Science 19, (2004). 281290.Google Scholar
Beierle, B.D., Lamoureux, S.F., Cockburn, J.M.H., and Spooner, I. A new method for visualizing sediment particle size distributions. Journal of Paleolimnology 27, (2002). 279283.CrossRefGoogle Scholar
Bennett, K.D. Determination of the number of zones in a biostratigraphical sequence. New Phytologist 132, (1996). 155170.CrossRefGoogle Scholar
Binford, M.W. Calculation and uncertainty analysis of 210Pb dates for PIRLA project lake sediment cores. Journal of Paleolimnology 3, (1990). 253267.CrossRefGoogle Scholar
Birks, H.J.B. Numerical tools in paleolimnology- Progress, potentialities, and problems. Journal of Paleolimnology 20, (1998). 307322.CrossRefGoogle Scholar
Birks, H.J.B., Gordon, A.D., (1985). Numerical Methods in Quaternary Pollen Analysis. Academic Press, London.Google Scholar
Birks, H.J.B., Line, J.M., Juggins, S., Stevenson, A.C., and ter Braak, C.J.F. Diatoms and pH reconstruction. Philosophical Transactions of the Royal Society of London. B 327, (1990). 263278.Google Scholar
Bradley, R.S., and Jones, P.D. “Little Ice Age” summer temperature variations: their nature and relevance to recent global warming trends. The Holocene 3, (1993). 367376.Google Scholar
Brodersen, K.P., and Lindegaard, C. Significance of subfossil chironomid remains in classification of shallow lakes. Hydrobiologia 342/343, (1997). 125132.CrossRefGoogle Scholar
Brodin, Y.W. The postglacial history of Lake Flarken, Southern Sweden, interpreted from subfossil insect remains. Internationale Revue Der Gesamten Hydrobiologie 71, (1986). 371432.Google Scholar
Brooks, S.J., and Birks, H.J.B. Chironomid-inferred Lateglacial and Early Holocene mean July air temperature for Krakenes Lake, western Norway. Journal of Paleolimnology 23, (2000). 7789.CrossRefGoogle Scholar
Brooks, S.J., and Birks, H.J.B. Chironomid-inferred air temperatures from Lateglacial and Holocene sites in north-west Europe: progress and problems. Quaternary Science Reviews 20, (2001). 17231741.CrossRefGoogle Scholar
Brooks, S.J., Lowe, J.J., and Mayle, F.E. The Late Devensian Lateglacial palaeoenvironmental record from Whitrig Bog, SE Scotland 2. Chironomidae (Insecta: Diptera). Boreas 26, (1997). 297308.CrossRefGoogle Scholar
Brooks, S.J., Langdon, P.G., and Heiri, O. The identification and use of Palaearctic Chironomidae larvae in palaeoecology. Quaternary Research Association Technical Guide vol. 10, (2007). 276 pp. Google Scholar
Clarke, K.R., and Gorley, R.N. Program Primer, Version 6. (2006). Primer-E, Plymouth, UK.Google Scholar
Coltrain, J.B., Hayes, M.G., and O'Rourke, D.H. Sealing, whaling and caribou: the skeletal isotope chemistry of Eastern Arctic foragers. Journal of Archaeological Science 31, (2004). 3957.Google Scholar
Comiso, J.C. A rapidly declining perennial sea ice cover in the Arctic. Geophysical Research Letters 29, (2002). 17(1)17(4).CrossRefGoogle Scholar
Cowling, S.A., Sykes, M.T., and Bradshaw, R.H. Palaeovegetation-model comparisons, climate change and tree succession in Scandinavia over the past 1500 years. Journal of Ecology 89, (2001). 227236.Google Scholar
Cranston, P.S. A key to the larvae of the British Orthocladiinae (Chironomidae). (1982). The Fresh Water Biological Association, Scientific Publication 45, Google Scholar
Croudace, I.W., Rindby, A., and Rothwell, R.G. ITRAX: description and evaluation of a new sediment core scanner. Rothwell, R.G. New ways of looking at sediment cores and core data. (2006). Geological Society of London special Publication, Google Scholar
Dickson, B. All change in the Arctic. Nature 397, (1999). 389391.CrossRefGoogle ScholarPubMed
Douglas, M.S.V., and Smol, J.P. Freshwater diatoms as indicators of environmental change in the High arctic. Stoermer, E.F., and Smol, J.P. The Diatoms: Applications for the Environmental and Earth Sciences. (1999). Cambridge University Press, Cambridge, UK. 227244.Google Scholar
Everett, J.T., and Fitzharris, B.B. The Arctic and the Antarctic. The Regional Impacts of Climate Change. An Assessment of Vulnerability. A Special Report of IPCC Working Group II for the Intergovernmental Panel of Climate Change. (1998). Cambridge University Press, Cambridge, United Kingdom. 85103.Google Scholar
Francis, D. A record of hypolimnetic oxygen conditions in a temperate multidepression lake from chemical evidence and chironomid remains. Journal of Paleolimnology 25, (2001). 351365.CrossRefGoogle Scholar
Gajewski, K., and Atkinson, D.A. Climatic change in northern Canada. Environmental Review 11, (2003). 69102.CrossRefGoogle Scholar
Goosse, H., Arzel, O., Luterbacher, J., Mann, M.E., Renssen, H., Riedwyl, N., Timmermann, A., Xoplaki, E., and Wanner, H. The origin of the European “Medieval Warm Period”. Climatic Past 2, (2006). 99113.CrossRefGoogle Scholar
Heinrichs, M.L., Peglar, S.M., Bigler, C., and Birks, H.J.B. A multi-proxy palaeoecological study of Alanen Laanijärvi, a boreal-forest lake in Swedish Lapland. Boreas 34, (2005). 192206.CrossRefGoogle Scholar
Heiri, O., and Lotter, A.F. Effect of low count sums on quantitative environmental reconstructions: an example using subfossil chironomids. Journal of Paleolimnology 26, (2001). 343350.CrossRefGoogle Scholar
Heiri, O., Lotter, A.F., and Lemcke, G. Loss on ignition as a method for estimating organic and carbonate content in sediments: reproducibility and comparability of results. Journal of Paleolimnology 25, (2001). 101110.CrossRefGoogle Scholar
Heiri, O., Lotter, A.F., Hausmann, S., and Kienast, F. A chironomid-based Holocene summer air temperature reconstruction from the Swiss Alps. The Holocene 13, (2003). 477484.CrossRefGoogle Scholar
Heywood, W.W., and Sanford, B.V. Geology of Southampton, coasts, and Mansel Islands, District of Keewatin, Northwest Territories. Geol. Surv. Can., Mem. 382, (1976). 35 pp Google Scholar
Johannessen, O.M., Miles, M., and Bjorgo, E. The Arctic's shrinking sea ice. Nature 376, (1995). 126127.CrossRefGoogle Scholar
Johannessen, O.M., Shalina, E.V., and Miles, M.W. Satellite evidence for an Arctic sea ice in transformation. Science 286, (1999). 19371939.CrossRefGoogle Scholar
Jones, P.D., Briffa, K.R., Barnett, T.P., and Tett, S.F.B. High-resolution palaeoclimatic records for the last millennium: interpretation, integration and comparison with General Circulation Model control run temperatures. The Holocene 8, (1998). 477483.CrossRefGoogle Scholar
Juggins, S. Program Zone, Version 1.2. (1992). University of Newcastle, UK.Google Scholar
Juggins, S. Program C2 Data Analysis, Version 1.4.2. (2003). University of Newcastle, UK.Google Scholar
Laperrière, L., (2006). Évolution postglaciaire du secteur sud-ouest du Bassin de Foxe, île de Southampton, inférée par les assemblages fossiles de diatomées. Master thesis, Department of Geography, Laval University, Québec., 80 pp.Google Scholar
Larocque, I. How many chironomid head capsules is enough? A statistical approach to determine sample size for paleoclimatic reconstruction. Palaeogeography, Palaeoclimatology, Palaeoecology 172, (2001). 133142.CrossRefGoogle Scholar
Larocque, I., and Hall, R.I. Holocene temperature estimates and chironomid community composition in the Abisko Valley, northern Sweden. Quaternary Science Reviews 23, (2004). 24532465.Google Scholar
Larocque, I., Rolland, N., (2006). Le guide visuel des chironomides sub-fossiles, du Québec à l'île d'Ellesmere. Rapport de recherche R-900. Institut National de la Recherche Scientifique, Québec, Canada., 116 pp.Google Scholar
Larocque, I., Hall, R.I., and Grahn, E. Chironomids as indicators of climate change: a 100-lake training set from a subarctic region of northern Sweden (Lapland). Journal of Paleolimnology 26, (2001). 307322.CrossRefGoogle Scholar
Larocque, I., Pienitz, R., and Rolland, N. Factors indicating the distribution of chironomids in lakes distributed along a latitudinal gradient in northwestern Québec, Canada. Canadian Journal of Fisheries and Aquatic Sciences 63, (2006). 12861297.CrossRefGoogle Scholar
Last, W.M. Textural analysis of lake sediments. Last, W.M., Smol, J.P. Tracking Environmental Change Using Lake Sediments: Physical and Geochemical Methods, Developments in Paleoenvironmental Research (DPER) Vol. 4, (2001). Kluwer Academic Publishers, 4181.Google Scholar
Lepš, J., and Šmilauer, P. Multivariate Analysis of Ecological Data using CANOCO. (2003). Cambridge University Press, 280 pp CrossRefGoogle Scholar
Levesque, A.J., Cwynar, L.C., and Walker, I.R. Richness diversity and succession of Late-glacial chironomid assemblages in New Brunswick, Canada. Journal of Paleolimnology 16, (1996). 257274.Google Scholar
Mann, M.E., Bradley, R.S., and Hughes, M.K. Global-scale temperature patterns and climate forcing over the past six centuries. Nature 329, (1998). 779787.Google Scholar
Mann, M.E., Bradley, R.S., and Hughes, M.K. Northern Hemisphere temperatures during the past millennium: inferences, uncertainties, and limitations. Geophysical Research Letters 26, (1999). 759762.Google Scholar
Merilaïnen, J.J., Hynynen, J., Palomäki, A., Reinikainen, P., Teppo, A., and Granberg, K. Importance of diffuse nutrient loading and lake level changes to the eutrophication of an originally oligotrophic boreal lake: a palaeolimnological diatom and chironomid analysis. Journal of Paleolimnology 24, (2000). 251270.Google Scholar
Moore, J.J., Hughen, K.A., Miller, G.H., and Overpeck, J.T. Little ice age recorded in summer temperature reconstruction from varved sediments of Donard Lake, Baffin Island, Canada. Journal of Paleolimnology 25, (2001). 503517.Google Scholar
Olander, H., Birks, H.J.B., Korhola, A., and Blom, T. An expanded calibration model for inferring lake water and air temperatures from fossil chironomid assemblages in northern Fennoscandia. The Holocene 9, (1999). 279294.CrossRefGoogle Scholar
Oliver, D.R., and Roussel, M.E. The Insects and Arachnids of Canada, Part II. The Genera of Larval Midges of Canada. Diptera: Chironomidae. (1983). Agriculture Canada, Publications 1746, Ottawa, Canada. 263 pp Google Scholar
Palmer, S., Walker, I.R., Heinrichs, M., Hebda, R., and Scudder, G. Postglacial midge community change and Holocene palaeotemperature reconstructions near treeline, southern British Columbia (Canada). Journal of Paleolimnology 28, (2002). 469490.Google Scholar
Perren, B., Bradley, R.S., and Francus, P. Rapid lacustrine response to recent High Arctic warming: a diatom record from Sawtooth Lake, Ellesmere Island, Nunavut. Arctic, Antarctic, and Alpine Research 35, (2003). 271278.Google Scholar
Pienitz, R., Douglas, M.S.V., and Smol, J.P. Epilogue: paleolimnological research from Arctic and Antarctic regions. Pienitz, R., Douglas, M.S.V., Smol, J.P. Long-Term Environmental Change in Arctic and Antarctic Lakes, Developments in Paleoenvironmental Research (DPER) Vol. 8, (2004). Springer-Verlag, Dordrecht/Heidelberg. 509511.Google Scholar
Pinder, L.C.V., and Morley, D.J. Chironomidae as indicators of water quality — with a comparison of the chironomid faunas of a series of contrasting Cumbirans Tarns. Harrington, R., and Stork, N.E. Insects in a Changing Environment. (1995). Academic Press, London. 272297.Google Scholar
Ponader, K., Pienitz, R., Vincent, W., and Gajewski, K. Limnological conditions in a subarctic lake (northern Québec, Canada) during the Late Holocene: analyses based on fossil diatoms. Journal of Paleolimnology 27, (2002). 353366.Google Scholar
Quinlan, R., and Smol, J.P. Setting minimum head capsule abundance and taxa deletion criteria in chironomid-based inference models. Journal of Paleolimnology 26, (2001). 327342.Google Scholar
Quinlan, R., and Smol, J.P. Regional assessment of long-term hypolimnetic oxygen changes in Ontario (Canada) shield lake using subfossil chironomids. Journal of Paleolimnology 27, (2002). 249260.Google Scholar
Rieradevall, M., and Brooks, S.J. An identification guide to subfossil Tanypodinae larvae based on cephalic setation. Journal of Paleolimnology 25, (2001). 8199.Google Scholar
Rolland, N., and Larocque, I. The efficiency of kerosene flotation for extraction of chironomid head capsules from lake sediments samples. Journal of Paleolimnology 37, (2006). 565572.Google Scholar
Rolland, N., Larocque, I., Francus, P., Pienitz, R., and Laperrière, L. Holocene climate inferred from biological (Diptera: Chironomidae) analysis in a Southampton Island (Nunavut, Canada) lake. The Holocene 18, (2008). 229241.Google Scholar
Rothrock, D.A., Yu, Y., and Maykut, G.A. Thinning of the Arctic sea-ice cover. Geophysical Research Letters 26, (1999). 34693472.Google Scholar
Rouault, S., (2006). Déglaciation et évolution holocène de la région de Coral Harbour, sud-est de l'île de Southampton, Nunavut. Master thesis, Department of Geography, Laval University, Québec., 104 pp.Google Scholar
Rouse, W., Douglas, M., Hecky, R., Kling, G., Lesack, L., Marsh, P., McDonald, M., Nicholson, B., Roulet, N., and Smol, J.P. Effects of climate change on the freshwaters of arctic and subarctic North America. Hydrological Processes 11, (1997). 873902.Google Scholar
Rühland, K.M., Smol, J.P., and Pienitz, R. Ecology and spatial distributions of surface-sediment diatoms from 77 lakes in the subarctic Canadian treeline region. Canadian Journal of Botany 81, (2003). 5773.Google Scholar
Saulnier-Talbot, É., Pienitz, R., and Vincent, W.F. Holocene lake succession and palaeo-optics of a subarctic lake, northern Québec, Canada. The Holocene 13, (2003). 517526.Google Scholar
Schmäh, A. Variation among fossil chironomid assemblages in surficial sediments of Bodensee untersee (SW-Germany): implications for paleolimnological interpretation. Journal of Paleolimnology 9, (1993). 99108.Google Scholar
Serreze, M.C., Walsh, J.E., Chapin, F.S. III, Osterkamp, T., Dyurgerov, M., Romanovsky, V., Oechel, W.C., Morinson, J., Zhang, T., and Barry, R.G. Observation evidence of recent change in the northern high-latitude environment. Climatic Change 46, (2000). 159207.Google Scholar
Simola, H., Merilainen, J.J., Sandman, O., Marttila, V., Karjalainen, H., Kukkonen, M., Julken-Tiitto, R., and Hakulinen, J. Palaeolimnological analyses as information source for large lake biomonitoring. Hydrobiologia 322, (1996). 283292.CrossRefGoogle Scholar
Smol, J.P., Wolfe, A.P., Birks, H.J.B., Douglas, M.S.V., Jones, V.J., Korhola, A., Pienitz, R., Rühland, K., Sorvari, S., Antoniades, D., Brooks, S.J., Fallu, M.A., Hughes, M., Keatley, B.E., Laing, T.E., Michelutti, N., Nazarova, L., Nyman, M., Paterson, A.M., Perren, B., Quinlan, R., Rautio, M., Saulnier-Talbot, É., Siitonen, S., Solovieva, N., and Weckström, J. Climate-driven regime shifts in the biological communities of arctic lakes. Proc. Natl. Acad. Sci. U. S. A. 102, 12 (2005). 43974402.Google Scholar
St-Onge, G., Mulder, T., Francus, P., and Long, B. Continuous physical properties of cored marine sediments. Hillaire-Marcel, C., and de Vernal, A. Proxies in Late Cenozoic Paleoceanography. (2007). Elsevier, 6398.Google Scholar
Stuiver, M., Reimer, P.J., Reimer, R.W., (2005). Program CALIB. version 5.0.1. [WWW program and documentation].Google Scholar
ter Braak, C.J.F., and Šmilauer, P. CANOCO Reference Manual and CanoDraw for Windows User's Guide: Software for Canonical Community Ordination (version 4.5). (2002). Microcomputer Power, Ithaca NY, USA. 500 pp Google Scholar
Velle, G., Larsen, J., Eide, W., Peglar, S.M., and Birks, H.J.B. Holocene environmental history and climate of Råtåsjøen, a low-alpine in south central Norway. Journal of Paleolimnology 33, (2005). 129153.Google Scholar
Walker, I.R., and MacDonald, G.M. Distributions of Chironomidae (Insecta: Diptera) and other freshwater midges with respect to treeline, Northwest Territories, Canada. Arct. Alp. Res. 27, (1995). 258263.Google Scholar
Walker, I.R., and Paterson, C.G. Post-glacial chironomid succession in two small, humic lakes in the New Brunswick–Nova Scotia (Canada) border area. Freshw. Invertebr. Biol. 2, (1983). 6173.Google Scholar
Walker, I.R., Smol, J.P., Engstrom, D.R., and Birks, H.J.B. An assessment of Chironomidae as quantitative indicators of past climatic change. Canadian Journal of Fisheries and Aquatic Sciences 48, (1991). 975987.Google Scholar
Walker, I.R., Levesque, A.J., Cwynar, L.C., and Lotter, A.F. An expanded surface-water palaeotemperature inference model for use with fossil midges from eastern Canada. Journal of Paleolimnology 18, (1997). 165178.Google Scholar
Walker, I.R., Levesque, A.J., Pienitz, R., and Smol, J.P. Freshwater midges of the Yukon and adjacent Northwest Territories: a new tool for reconstructing Beringian paleoenvironments. Journal of the North American Benthological Society 22, (2003). 323337.CrossRefGoogle Scholar
Wiederholm, T. Chironomidae of the Holarctic region. Keys and Diagnoses. Part 1. Larvae. Entomologica Scandinavica Supplementum 19, (1983). Google Scholar
Environment Canada, (2002). The 2002 climate date CD-ROM.Google Scholar
IPCC, (2007). Climate Change 2007: Climate Change Impacts, Adaptation and Vulnerability. Summary for policymakers. 23 pp.Google Scholar