Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-26T06:37:16.083Z Has data issue: false hasContentIssue false

Environmental changes in SW France during the Middle to Upper Paleolithic transition from the pollen analysis of an eastern North Atlantic deep-sea core

Published online by Cambridge University Press:  30 May 2022

Tiffanie Fourcade*
Affiliation:
Archéosciences Bordeaux, UMR 6034, Université Bordeaux Montaigne, CNRS, Maison de l'Archéologie, Esplanade des Antilles, 33600 Pessac, France Environnements et Paléoenvironnements Océaniques et Continentaux (EPOC), UMR CNRS 5805, Université de Bordeaux, 33600 Pessac, France
María Fernanda Sánchez Goñi
Affiliation:
Environnements et Paléoenvironnements Océaniques et Continentaux (EPOC), UMR CNRS 5805, Université de Bordeaux, 33600 Pessac, France École Pratique des Hautes Études, EPHE PSL University, Paris, France
Christelle Lahaye
Affiliation:
Archéosciences Bordeaux, UMR 6034, Université Bordeaux Montaigne, CNRS, Maison de l'Archéologie, Esplanade des Antilles, 33600 Pessac, France
Linda Rossignol
Affiliation:
Environnements et Paléoenvironnements Océaniques et Continentaux (EPOC), UMR CNRS 5805, Université de Bordeaux, 33600 Pessac, France
Anne Philippe
Affiliation:
Laboratoire de Mathématiques Jean Leray, Nantes Université, 44322, Nantes, France
*
*Corresponding author email address: [email protected]

Abstract

Evaluating synchronies between climate and cultural changes is a prerequisite for addressing the possible effect of environmental changes on human populations. Searching for synchronies during the Middle-Upper Paleolithic transition (ca. 48–36 ka) is hampered by the limits of radiocarbon dating techniques and the large chronological uncertainties affecting the archaeological and paleoclimatic records, as well by their low temporal resolution. Here, we present a high-resolution, pollen-based vegetation record from the Bay of Biscay, sea surface temperature changes, additional 14C ages, and a new IRSL date on the fine-sediment fraction of Heinrich Stadial (HS) 6. The IRSL measurements give an age of ca. 54.0 ± 3.4 ka. The paleoclimatic results reveal a succession of rapid climatic changes during the Middle-Upper Paleolithic transition in SW France (i.e. D-O 12–8 and two distinct climatic phases during HS 4). Comparison of the new paleoclimatic record with chronologically well-constrained regional archaeological changes shows that no synchronies exist between cultural transitions and environmental changes. The disappearance of Neanderthals and the arrival of Homo sapiens in SW France encompassed a long-term forest opening, suggesting that Homo sapiens may have progressively replaced Neanderthals from D-O 10 to HS 4 through competition for the same ecological niches.

Type
Research Article
Copyright
Copyright © University of Washington. Published by Cambridge University Press, 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aitken, M.J., 1998. An Introduction to Optical Dating: The Dating of Quaternary Sediments by the Use of Photon-stimulated Luminescence. Oxford University Press, Oxford, New York.Google Scholar
Allen, G., Castaing, P., 1977. Carte de répartition des sédiments superficiels sur le plateau continental du Golfe de Gascogne. Bulletin de l'Institut de Géologie du Bassin d'Aquitaine 23, 255260.Google Scholar
Armitage, S.J., Pinder, R.C., 2017. Testing the applicability of optically stimulated luminescence dating to Ocean Drilling Program cores. Quaternary Geochronology 39, 124130.CrossRefGoogle Scholar
Badino, F., Pini, R., Ravazzi, C., Margaritora, D., Arrighi, S., Bortolini, E., Figus, et al. , 2020. An overview of Alpine and Mediterranean paleogeography, terrestrial ecosystems and climate history during MIS 3 with focus on the Middle to Upper Palaeolithic transition. Quaternary International 551, 728.CrossRefGoogle Scholar
Banks, W.E., d'Errico, F., Peterson, A.T., Kageyama, M., Sima, A., Sánchez-Goñi, M.-F., 2008. Neanderthal extinction by competitive exclusion. PLoS ONE 3, e3972. https://doi.org/10.1371/journal.pone.0003972.CrossRefGoogle ScholarPubMed
Banks, W.E., d'Errico, F., Zilhão, J., 2013. Human-climate interaction during the early Upper Paleolithic: testing the hypothesis of an adaptive shift between the Proto-Aurignacian and the Early Aurignacian. Journal of Human Evolution 64, 3955.CrossRefGoogle ScholarPubMed
Bard, E., Arnold, M., Mangerud, J., Paterne, M., Labeyrie, L., Duprat, J., Mélières, M.-A., Sønstegaard, E., Duplessy, J.-C., 1994. The North Atlantic atmosphere-sea surface 14C gradient during the Younger Dryas climatic event. Earth and Planetary Science Letters 126, 275287.CrossRefGoogle Scholar
Barshay-Szmidt, C.C., Eizenberg, L., Deschamps, M., 2012. Radiocarbon (AMS) dating the Classic Aurignacian, Proto-Aurignacian and Vasconian Mousterian at Gatzarria Cave (Pyrénées-Atlantiques, France). PALEO Revue d'Archéologie Préhistorique 23, 1138.Google Scholar
Barshay-Szmidt, C., Normand, C., Flas, D., Soulier, M.-C., 2018. Radiocarbon dating the Aurignacian sequence at Isturitz (France): Implications for the timing and development of the Protoaurignacian and Early Aurignacian in western Europe. Journal of Archaeological Science: Reports 17, 809838.Google Scholar
Barshay-Szmidt, C., Bazile, F., Brugal, J.-P., 2020. First AMS 14C dates on the Protoaurignacian in Mediterranean France: The site of Esquicho-Grapaou (Russan-Ste-Anastasie, Gard). Journal of Archaeological Science: Reports 33, 102474. https://doi.org/10.1016/j.jasrep.2017.09.003.Google Scholar
Bartolomei, G., Broglio, A., Cassoli, P.F., Castelletti, L., Cattani, L., Cremaschi, M., Giacobini, G., et al. , 1994. La Grotte de Fumane. Un site aurignacien au pied des Alpes. Preistoria Alpina 28, 131179.Google Scholar
Bateman, M.D., Swift, D.A., Piotrowski, J.A., Rhodes, E.J., Damsgaard, A., 2018. Can glacial shearing of sediment reset the signal used for luminescence dating? Geomorphology 306, 90101.CrossRefGoogle Scholar
Bateman, M.D., Swift, D.A., Piotrowski, J.A., Sanderson, D.C.W., 2012. Investigating the effects of glacial shearing of sediment on luminescence. Quaternary Geochronology 10, 230236.CrossRefGoogle Scholar
Bazile, F., 1977. Nouvelles données sur le Paléolithique Supérieur ancien en Languedoc Oriental. 20th Congrés Préhistorique de France, Provence, 1974, Châteauneuf-les-Martigues. SPF, Paris, pp. 2428.Google Scholar
Berger, J.-F., Guilaine, J., 2009. The 8200 cal BP abrupt environmental change and the Neolithic transition: a Mediterranean perspective. Quaternary International 200, 3149.CrossRefGoogle Scholar
Bergström, A., McCarthy, S.A., Hui, R., Almarri, M.A., Ayub, Q., Danecek, P., Chen, Y., et al. , 2020. Insights into human genetic variation and population history from 929 diverse genomes. Science 367, eaay5012. https://doi.org/10.1126/science.aay5012.CrossRefGoogle ScholarPubMed
Blaauw, M., Christen, J.A., 2011. Flexible paleoclimate age-depth models using an autoregressive gamma process. Bayesian Analysis 6, 457474.CrossRefGoogle Scholar
Bokelmann, L., Hajdinjak, M., Peyrégne, S., Brace, S., Essel, E., Filippo, C. de, Glocke, I., et al. , 2019. A genetic analysis of the Gibraltar Neanderthals. PNAS 116, 1561015615.CrossRefGoogle ScholarPubMed
Bon, F., 2002. A brief overview of Aurignacian cultures in the context of the industries of the transition from the Middle to the Upper Paleolithic. In: Bar-Yosef, O., Zilhao, J. (Eds.), Towards a Definition of the Aurignacian. Trabalhos de Arqueologia 45, Lisboa, American School of Prehistoric Research/Instituto Português de Arqueologia, pp. 133144.Google Scholar
Bond, G., Lotti, R., 1995. Iceberg discharges into the North Atlantic on millennial timescales during the last glaciation. Science 267, 10051010.CrossRefGoogle Scholar
Borrell, F., Junno, A., Barceló, J.A., 2015. Synchronous environmental and cultural change in the emergence of agricultural economies 10,000 years ago in the Levant. PLoS ONE 10, e0134810. https://doi.org/10.1371/journal.pone.0134810.CrossRefGoogle ScholarPubMed
Brocheray, S., 2015. Transferts et Accumulations sur les Marges du Golfe de Gascogne: Architecture, Fonctionnement et Contrôles. These de doctorat, Océanographie, Université de Bordeaux, France.Google Scholar
Brocheray, S., Cremer, M., Zaragosi, S., Schmidt, S., Eynaud, F., Rossignol, L., Gillet, H., 2014. 2000 years of frequent turbidite activity in the Capbreton Canyon (Bay of Biscay). Marine Geology 347, 136152.CrossRefGoogle Scholar
Broecker, W.S., Olson, E.A., 1961. Lamont radiocarbon measurements VIII. Radiocarbon 3, 176204.CrossRefGoogle Scholar
Butzin, M., Heaton, T.J., Köhler, P., Lohmann, G., 2020. A short note on marine reservoir age simulations used in IntCal20. Radiocarbon 62, 865871.CrossRefGoogle Scholar
Buylaert, J.-P., Jain, M., Murray, A.S., Thomsen, K.J., Thiel, C., Sohbati, R., 2012. A robust feldspar luminescence dating method for Middle and Late Pleistocene sediments. Boreas 41, 435451.CrossRefGoogle Scholar
Castaing, P., 1981. Le Transfert à l'Océan des Suspensions Estuariennes: Cas de la Gironde. Institut de géologie du Bassin d'Aquitaine, Bordeaux 1, Bordeaux, 530 pp.Google Scholar
Castaing, P., Froidefond, J.-M., Lazure, P., Weber, O., Prud'homme, R., Jouanneau, J.-M., 1999. Relationship between hydrology and seasonal distribution of suspended sediments on the continental shelf of the Bay of Biscay. Deep-Sea Research II 46, 19792001.CrossRefGoogle Scholar
Colas, F., 2003. Circulation et Dispersion Lagrangiennes en Atlantique Nord-est. Ph.D. dissertation, Université de Bretagne Occidentale, Brest, 253 pp.Google Scholar
Columbu, A., Chiarini, V., Spötl, C., Benazzi, S., Hellstrom, J., Cheng, H., De Waele, J., 2020. Speleothem record attests to stable environmental conditions during Neanderthal–modern human turnover in southern Italy. Nature Ecology & Evolution 4, 11881195.CrossRefGoogle ScholarPubMed
Correa-Metrio, A., Urrego, D.H., Cabrera, K.R., Bush, M.B., 2012. paleoMAS. Paleoecological Analysis, R package version 2.0-1. Vienna, The R Project for Statistical Computing, available at <http://CRAN.R-project.org/package=paleoMAS>Google Scholar
Daniau, A.-L., Sánchez Goñi, M.F., Duprat, J., 2009. Last glacial fire regime variability in western France inferred from microcharcoal preserved in core MD04-2845, Bay of Biscay. Quaternary Research 71, 385396.CrossRefGoogle Scholar
Dansgaard, W., Johnsen, S., Clausen, H., Dahljensen, D., Gundestrup, N., Hammer, C., Oeschger, H., 1984. Evidence for general instability of past climate from a 250-kyr ice-core record. In: Hansen, J.E., Takahashi, T. (Eds.), Climate Processes and Climate Sensitivity. American Geophysical Union, Washington, DC.Google Scholar
Dansgaard, W., Johnsen, S.J., Clausen, H.B., Dahl-Jensen, D., Gundestrup, N.S., Hammer, C.U., Hvidberg, C.S., et al. , 1993. Evidence for general instability of past climate from a 250-kyr ice-core record. Nature 364, 218220.CrossRefGoogle Scholar
Dayet, L., d'Errico, F., Garcia-Moreno, R., 2014. Searching for consistencies in Châtelperronian pigment use. Journal of Archaeological Science 44, 180193.CrossRefGoogle Scholar
Defleur, A.R., Desclaux, E., Jabbour, R.S., Richards, G.D., 2020. The Eemian: global warming, ecosystem upheaval, demographic collapse and cannibalism at Moula-Guercy. A reply to Slimak and Nicholson (2020). Journal of Archaeological Science 117, 105113. https://doi.org/10.1016/j.jas.2020.105113.CrossRefGoogle Scholar
d'Errico, F., Sánchez Goñi, M.F., 2003. Neandertal extinction and the millennial scale climatic variability of OIS 3. Quaternary Science Reviews 22, 769788. https://doi.org/10.1016/S0277-3791(03)00009-XCrossRefGoogle Scholar
d'Errico, F., Julien, M., Liolios, D., Vanhaeren, M., Baffier, D., 2003. Many awls in our argument. Bone tool manufacture and use in the Châtelperronian and Aurignacian levels of the Grotte du Renne at Arcy-sur-Cure. In: Zilhão, J., d'Errico, F. (Eds.), The Chronology of the Aurignacian and of the Transitional Technocomplexes. Dating, Stratigraphies, Cultural Implications. Instituto Portugues de Arqueologia, Lisbon, pp. 247270.Google Scholar
Discamps, E., Jaubert, J., Bachellerie, F., 2011. Human choices and environmental constraints: deciphering the variability of large game procurement from Mousterian to Aurignacian times (MIS 5–3) in southwestern France. Quaternary Science Reviews 30, 27552775.CrossRefGoogle Scholar
Discamps, E., Royer, A., 2017. Reconstructing palaeoenvironmental conditions faced by Mousterian hunters during MIS 5 to 3 in southwestern France: A multi-scale approach using data from large and small mammal communities. Quaternary International 433, 6487.CrossRefGoogle Scholar
Discamps, E., Soulier, M.-C., Bachellerie, F., Bordes, J.-G., Castel, J.-C., Morin, E., 2010. Des faunes et des hommes: interactions entre environnements et cultures à la fin du Paléolithique moyen et au début du Paléolithique supérieur dans le Sud-Ouest de la France. In: Thiébaut, C., Costamagno, S., Claud, E. (Eds.), Transitions, Ruptures et Continuité en Préhistoire. XXVIIe Congrès Préhistorique de France—Bordeaux-Les Eyzies, 31 Mai–5 Juin 2010: Mémoires de la SPFEditors, pp. 299314Google Scholar
Duller, G.A.T., 2015. The Analyst software package for luminescence data: overview and recent improvements. Ancient TL 33, 3542.Google Scholar
Elliot, M., Labeyrie, L., Bond, G., Cortijo, E., Turon, J.-L., Tisnerat, N., Duplessy, J.-C., 1998. Millennial-scale iceberg discharges in the Irminger Basin during the Last Glacial Period: relationship with the Heinrich events and environmental settings. Paleoceanography 13, 433446.CrossRefGoogle Scholar
Elliot, M., Labeyrie, L., Dokken, T., Manthé, S., 2001. Coherent patterns of ice-rafted debris deposits in the Nordic regions during the last glacial (10–60 ka). Earth and Planetary Science Letters 194, 151163.CrossRefGoogle Scholar
Elliot, M., Labeyrie, L., Duplessy, J.-C., 2002. Changes in North Atlantic deep-water formation associated with the Dansgaard–Oeschger temperature oscillations (60–10ka). Quaternary Science Reviews 21, 11531165.CrossRefGoogle Scholar
Feser, F., Barcikowska, M., Krueger, O., Schenk, F., Weisse, R., Xia, L., 2015. Storminess over the North Atlantic and northwestern Europe—a review. Quarterly Journal of the Royal Meteorological Society 141, 350382.CrossRefGoogle Scholar
Finlayson, C., Carrión, J.S., 2007. Rapid ecological turnover and its impact on Neanderthal and other human populations. Trends in Ecology & Evolution 22, 213222.CrossRefGoogle ScholarPubMed
Fletcher, W.J., Sánchez Goñi, M.F., Allen, J.R.M., Cheddadi, R., Combourieu-Nebout, N., Huntley, B., Lawson, I., et al. , 2010. Millennial-scale variability during the last glacial in vegetation records from Europe. Quaternary Science Reviews 29, 28392864.CrossRefGoogle Scholar
Froidefond, J.-M., Castaing, P., Jouanneau, J.-M., 1996. Distribution of suspended matter in a coastal upwelling area. Satellite data and in situ measurements. Journal of Marine Systems 8, 91105.Google Scholar
Fu, Q., Hajdinjak, M., Moldovan, O.T., Constantin, S., Mallick, S., Skoglund, P., Patterson, N., et al. , 2015. An early modern human from Romania with a recent Neanderthal ancestor. Nature 524, 216219.CrossRefGoogle ScholarPubMed
Galbraith, R.F., Roberts, R.G., Laslett, G.M., Yoshida, H., Olley, J.M., 1999. Optical dating of single and multiple grains from Jinmium rock shelter, Northern Australia: Part I, experimental design and statistical models. Archaeometry 41, 339364.CrossRefGoogle Scholar
Genty, D., Blamart, D., Ouahdi, R., Gilmour, M., Baker, A., Jouzel, J., Van-Exter, S., 2003. Precise dating of Dansgaard-Oeschger climate oscillations in western Europe from stalagmite data. Nature 421, 833837.CrossRefGoogle ScholarPubMed
Genty, D., Combourieu-Nebout, N., Peyron, O., Blamart, D., Wainer, K., Mansuri, F., Ghaleb, B., et al. , 2010. Isotopic characterization of rapid climatic events during OIS3 and OIS4 in Villars Cave stalagmites (SW-France) and correlation with Atlantic and Mediterranean pollen records. Quaternary Science Reviews 29, 27992820.CrossRefGoogle Scholar
Gilpin, W., Feldman, M.W., Aoki, K., 2016. An ecocultural model predicts Neanderthal extinction through competition with modern humans. PNAS 113, 21342139.CrossRefGoogle ScholarPubMed
Golovanova, L.V., Doronichev, V.B., Cleghorn, N.E., Koulkova, M.A., Sapelko, T.V., Shackley, M.S., 2010. Significance of ecological factors in the Middle to Upper Paleolithic transition. Current Anthropology 51, 655691.CrossRefGoogle Scholar
Gravina, B., Bachellerie, F., Caux, S., Discamps, E., Faivre, J.-P., Galland, A., Michel, A., Teyssandier, N., Bordes, J.-G., 2018. No reliable evidence for a Neanderthal-Châtelperronian association at La Roche-à-Pierrot, Saint-Césaire. Scientific Reports 8, 15134. https://doi.org/10.1038/s41598-018-33084-9.CrossRefGoogle ScholarPubMed
Green, R.E., Krause, J., Briggs, A.W., Maricic, T., Stenzel, U., Kircher, M., Patterson, N., et al. , 2010. A draft sequence of the Neandertal genome. Science 328, 710722.CrossRefGoogle ScholarPubMed
Greenbaum, G., Friesem, D.E., Hovers, E., Feldman, M.W., Kolodny, O., 2019. Was inter-population connectivity of Neanderthals and modern humans the driver of the Upper Paleolithic transition rather than its product? Quaternary Science Reviews 217, 316329.CrossRefGoogle Scholar
Grimm, E.C., 1987. A Fortran77 program for stratigraphically constrained cluster analysis by the method of incremental sum of squares. Computers & Geosciences 13, 1335.CrossRefGoogle Scholar
Guérin, G., Christophe, C., Philippe, A., Murray, A.S., Thomsen, K.J., Tribolo, C., Urbanova, P., et al. , 2017. Absorbed dose, equivalent dose, measured dose rates, and implications for OSL age estimates: introducing the Average Dose Model. Quaternary Geochronology 41, 163173.CrossRefGoogle Scholar
Guibert, P., Schvoerer, M., 1991. TL dating: low background gamma spectrometry as a tool for the determination of the annual dose. International Journal of Radiation Applications and Instrumentation. Part D. Nuclear Tracks and Radiation Measurements 18, 231238.CrossRefGoogle Scholar
Guibert, P., Bechtel, F., Bourguignon, L., Lenoir, M., Brenet, M., Couchoud, I., Delagnes, A., et al. , 2008. Une base de données pour la chronologie du paléolithique moyen dans le Sud-Ouest de la France. Bulletin de la Société Préhistorique Française 47, 1940.Google Scholar
Hansen, V., Murray, A., Buylaert, J.-P., Yeo, E.-Y., Thomsen, K., 2015. A new irradiated quartz for beta source calibration. In: Bailiff, I.K., Chen, R., Duller, G.A.T., Huot, S., Lamothe, M. (Eds.), 14th International Conference on Luminescence and Electron Spin Resonance Dating, 7–11 July, 2014, Montréal, Canada. Radiation Measurements 81, 123127.Google Scholar
Heaton, T.J., Köhler, P., Butzin, M., Bard, E., Reimer, R.W., Austin, W.E.N., Ramsey, C.B., et al. , 2020. Marine20—the marine radiocarbon age calibration curve (0–55,000 cal BP). Radiocarbon 62, 779820.CrossRefGoogle Scholar
Heusser, L., Balsam, W.L., 1977. Pollen distribution in the northeast Pacific Ocean. Quaternary Research 7, 4562.CrossRefGoogle Scholar
Higham, T., Jacobi, R., Julien, M., David, F., Basell, L., Wood, R., Davies, W., Ramsey, C.B., 2010. Chronology of the Grotte du Renne (France) and implications for the context of ornaments and human remains within the Chatelperronian. Proceedings of the National Academy of Sciences 107, 2023420239.CrossRefGoogle ScholarPubMed
Hodgkins, J., Marean, C.W., Turq, A., Sandgathe, D., McPherron, S.J.P., Dibble, H., 2016. Climate-mediated shifts in Neandertal subsistence behaviors at Pech de l'Azé IV and Roc de Marsal (Dordogne Valley, France). Journal of Human Evolution 96, 118.CrossRefGoogle ScholarPubMed
Hublin, J.-J., Talamo, S., Julien, M., David, F., Connet, N., Bodu, P., Vandermeersch, B., Richards, M.P., 2012. Radiocarbon dates from the Grotte du Renne and Saint-Césaire support a Neandertal origin for the Châtelperronian. PNAS 109, 1874318748.CrossRefGoogle ScholarPubMed
Hublin, J.-J., Sirakov, N., Aldeias, V., Bailey, S., Bard, E., Delvigne, V., Endarova, E., et al. , 2020. Initial Upper Palaeolithic Homo sapiens from Bacho Kiro Cave, Bulgaria. Nature 581, 299302.CrossRefGoogle ScholarPubMed
Huntley, D.J., Baril, M.R., 1997. The K content of the K-feldspars being measured in optical dating or in thermoluminescence dating. Ancient TL 15, 1113.Google Scholar
Hurrell, J.W., 1995. Decadal trends in the North Atlantic oscillation: Regional temperatures and precipitation. Science 269, 676679.CrossRefGoogle ScholarPubMed
Husson, F., , S., Pagès, J., 2017. Exploratory Multivariate Analysis by Example Using R. Chapman and Hall/CRC, New York, 262 pp.CrossRefGoogle Scholar
Jaubert, J., 2011. Les archéo-sequences du Paléolithique moyen du Sud-Ouest de la France: Quel bilan un quart de siècle après François Bordes? François Bordes et la Préhistoire, Éditions du Comité des Travaux Historiques et Scientifiques, Bordeaux, pp. 235253.Google Scholar
Jaubert, J., Bordes, J.-G., Discamps, E., Gravina, B., 2011. A New Look at the end of the Middle Palaeolithic sequence in southwestern France. In: Derevianko, A.P., Shunkov, M.V. (Eds.) Characteristic Features of the Middle to Upper Paleolithic Transition in Eurasia. Novosibirsk, Asian Palaeolithic Association, pp. 102115.Google Scholar
Jouanneau, J.-M., Weber, O., Cremer, M., Castaing, P., 1999. Fine-grained sediment budget on the continental margin of the Bay of Biscay. Deep-Sea Research II 46, 22052220.CrossRefGoogle Scholar
Juggins, S., 2019. rioja: Analysis of Quaternary Science Data. R package version 0.9-26. https://cran.r-project.org/package=rioja.Google Scholar
Kars, R.H., Busschers, F.S., Wallinga, J., 2012. Validating post IR-IRSL dating on K-feldspars through comparison with quartz OSL ages. Quaternary Geochronology 12, 7486.CrossRefGoogle Scholar
Kassambara, A., Mundt, F., 2020. factoextra: Extract and Visualize the Results of Multivariate Data Analyses. R Package Version 1.0.7. https://CRAN.R-project.org/package=factoextra.Google Scholar
Klingebiel, A., Legigan, P., 1978. Histoire géologique des divagations de l'Adour. In: Proceedings Congress IVème Centenaire du Détournement de l'Adour 1578–1978. Bayonne Société des Sciences, Lettres et Arts de Bayonne, pp. 2333.Google Scholar
Kuehl, S.A., Nittrouer, C.A., Allison, M.A., Faria, L.E.C., Dukat, D.A., Jaeger, J.M., Pacioni, T.D., Figueiredo, A.G., Underkoffler, E.C., 1996. Sediment deposition, accumulation, and seabed dynamics in an energetic fine-grained coastal environment. Continental Shelf Research 16, 787815.CrossRefGoogle Scholar
Lanos, P., Dufresne, P., 2019. ChronoModel version 2.0: Software for Chronological Modelling of Archaeological Data using Bayesian Statistics, 2.0 ed.Google Scholar
Lanos, P., Philippe, A., 2018. Event date model: a robust Bayesian tool for chronology building. Communications for Statistical Applications and Methods 25, 131157.Google Scholar
Lapierre, F., 1967. Etude de la répartition des sédiments dans le Golge de Gascogne. Institute Geologie Bassin Aquitaine Bulletin 3, 93126.Google Scholar
Laplace, G., 1966. Les Niveaux Castelperronien, Protoaurignaciens et Aurignaciens de Ia Grotte Gatzarria à Suhare en Pays Basque:(Fouilles 1961–1963). Quartär–Internationales Jahrbuch zur Erforschung des Eiszeitalters und der Steinzeit 17, 117140.Google Scholar
Lascu, I., Feinberg, J.M., Dorale, J.A., Cheng, H., Edwards, R.L., 2016. Age of the Laschamp excursion determined by U-Th dating of a speleothem geomagnetic record from North America. Geology 44, 139142.CrossRefGoogle Scholar
Laskar, J., Robutel, P., Joutel, F., Gastineau, M., Correia, A.C.M., Levrard, B., 2004. A long-term numerical solution for the insolation quantities of the Earth. Astronomy & Astrophysics 428, 261285.CrossRefGoogle Scholar
Lavin, A., Valdes, L., Sanchez, F., Abaunza, P., Forest, A., Boucher, J., Lazure, P., Jegou, A.-M., 2006. Chapter 24. The Bay of Biscay: the encountering of the ocean and the shelf (18b,E). In: Robinson, A.R., Brink, K.H. (Eds.), The Sea. Harvard University Press, pp. 9331001.Google Scholar
Legendre, P., Gallagher, E., 2001. Ecologically meaningful transformations for ordination of species. Oecologia 129, 271280.CrossRefGoogle ScholarPubMed
Lowick, S.E., Trauerstein, M., Preusser, F., 2012. Testing the application of post IR-IRSL dating to fine grain waterlain sediments. Quaternary Geochronology 8, 3340.CrossRefGoogle Scholar
Mangerud, J., Bondevik, S., Gulliksen, S., Karin Hufthammer, A., Høisæter, T., 2006. Marine 14C reservoir ages for 19th century whales and molluscs from the North Atlantic. In: Rose, J., Tzedakis, P., Elderfield, H. (Eds.), Special Issue, Critical Quaternary Stratigraphy. Quaternary Science Reviews 25, 32283245.Google Scholar
Marín-Arroyo, A.B., Rios-Garaizar, J., Straus, L.G., Jones, J.R., Rasilla, M. de la, Morales, M.R.G., Richards, M., Altuna, J., Mariezkurrena, K., Ocio, D., 2018. Chronological reassessment of the Middle to Upper Paleolithic transition and early Upper Paleolithic cultures in Cantabrian Spain. PLoS ONE 13, e0194708. https://doi.org/10.1371/journal.pone.0194708.CrossRefGoogle ScholarPubMed
Maroto, J., Soler, N., Fullola, J., 1996. Cultural change between Middle and Upper Paleolithic in Catalonia. In: Vaquero, M., Carbonell, E. (Eds.), The Last Neandertals, the First Anatomically Modern Humans: A Tale About Diversity, Cultural Change and Human Evolution: the Crisis of 40 ka BP. Universitat Rovira i Virgili; Capellades, Spain, pp. 219250.Google Scholar
Mary, Y., Eynaud, F., Colin, C., Rossignol, L., Brocheray, S., Mojtahid, M., Garcia, J., Peral, M., Howa, H., Zaragosi, S., Cremer, M., 2017. Changes in Holocene meridional circulation and poleward Atlantic flow: the Bay of Biscay as a nodal point. Climate of the Past 13, 201216.CrossRefGoogle Scholar
Mazières, A., Gillet, H., Castelle, B., Mulder, T., Guyot, C., Garlan, T., Mallet, C., 2014. High-resolution morphobathymetric analysis and evolution of Capbreton submarine canyon head (Southeast Bay of Biscay—French Atlantic Coast) over the last decade using descriptive and numerical modeling. Marine Geology 351, 112.CrossRefGoogle Scholar
Mellars, P., 2004. Neanderthals and the modern human colonization of Europe. Nature 432, 461465.CrossRefGoogle ScholarPubMed
Monge Soares, A.M., 1993. The 14C content of marine shells: evidence for variability in coastal upwelling off Portugal during the Holocene. In: IAEA, Isotope Techniques in the Study of Past and Current Environmental Changes in the Hydrosphere and the Atmosphere. International Atomic Energy Agency (IAEA), Proceedings Series, pp. 471485.Google Scholar
Moss, P.T., Kershaw, A.P., 2007. A late Quaternary marine palynological record (oxygen isotope stages 1 to 7) for the humid tropics of northeastern Australia based on ODP Site 820. In: Kershaw, A.P., Haberle, S.G., Turney, C.S.M., Sophie, C., Bretherton, S.C. (Eds.), Special Issue, Environmental History of the Humid Tropics region of north-east Australia. Palaeogeography, Palaeoclimatology, Palaeoecology 251, 422.Google Scholar
Murray, A.S., Wintle, A.G., 2003. The single aliquot regenerative dose protocol: potential for improvements in reliability. In: McKeever, S.W.S. (Ed.), Special Issue, Proceedings of the 10th International Conference on Luminescence and Electron-Spin Resonance Dating (LED 2002). Radiation Measurements 37, 377381.Google Scholar
Naughton, F., Sánchez Goñi, M.F., Kageyama, M., Bard, E., Duprat, J., Cortijo, E., Desprat, S., et al. , 2009. Wet to dry climatic trend in north-western Iberia within Heinrich events. Earth and Planetary Science Letters 284, 329342.CrossRefGoogle Scholar
Nelson, M., Rittenour, T., Cornachione, H., 2019. Sampling Methods for Luminescence Dating of Subsurface Deposits from Cores. Methods and Protocols 2, 88. https://doi.org/10.3390/mps2040088.CrossRefGoogle ScholarPubMed
Ning, S., Dupont, L.M., 1997. Vegetation and climatic history of southwest Africa: A marine palynological record of the last 300,000 years. Vegetation History and Archaeobotany 6, 117131.CrossRefGoogle Scholar
Normand, C., Turq, A., 2005. L'Aurignacien de la grotte d'Isturitz (France): la production lamellaire dans la séquence de la salle de Saint-Martin. In: Brun-Ricalens, Le, Dir, F.), Productions Lamellaires Attribuées à l'Aurignacien: Chaînes Opératoires et Perspectives Techno-Culturelles. Luxembourg, Archéologiques 1. Actes du Symposium C6.7, XIVe Congrès de l'UISPP, Université de Liège, 2–8 Septembre 2001, pp. 375394.Google Scholar
Oksanen, J., Blanchet, F.G., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., Minchin, P.R., et al. , 2020. vegan: Community Ecology Package: Ordination, Diversity and Dissimilarities. https://cran.r-project.org/web/packages/vegan/index.html.Google Scholar
Oliveira, D., Fernanda Sánchez Goñi, M., Naughton, F., Hodell, D., Rodrigues, T., Daniau, A.-L., Eynaud, F., Trigo, R., Abrantes, F., 2014. Understanding MIS 11 by integrating land-sea-ice records from the SHACK site (IODP 1385, SW Iberian margin). Geophysical Research Abstracts 16, EGU2014-13192. http://meetingorganizer.copernicus.org/EGU2014/EGU2014-13192.pdf.Google Scholar
Olley, J.M., De Deckker, P., Roberts, R.G., Fifield, L.K., Yoshida, H., Hancock, G., 2004. Optical dating of deep-sea sediments using single grains of quartz: a comparison with radiocarbon. Sedimentary Geology 169, 175189.CrossRefGoogle Scholar
Onoratini, G., 1986. Découverte en Provence orientale (grotte Rainaude) d'une industrie souche de l'Aurignacien: Cette civilisation est-elle monolithique? Bulletin de la Société Préhistorique Française 83, 240256.CrossRefGoogle Scholar
Onoratini, G., 2006. L’émergence de l'Homme moderne en zone nord-méditerranéenne. In: de Lumley, H., Midant-Reynes, B. (eds.), Special Issue, CLIMATS-CULTURES-SOCIETES aux Temps Préhistoriques, de l'Apparition des Hominidés Jusqu'au Néolothique. Comptes Rendus Palevol 5, 193202.Google Scholar
Ozenda, P., 1982. Les Végétaux dans la Biosphere. Doin Editeur, Paris, 431 pp.Google Scholar
Pétillon, J.-M., Laroulandie, V., Costamagno, S., Langlais, M., 2016. Testing environmental determinants in the cultural evolution of hunter-gatherers: a three-year multidisciplinary project on the occupation of the western Aquitaine basin during the Middle and Upper Magdalenian (19–14 kyr cal BP). Quaternary International 414, 18.CrossRefGoogle Scholar
Philippe, A., Vibet, M.-A., 2020. Analysis of archaeological phases using the R Package ArchaeoPhases. Journal of Statistical Software 93, 125. https://doi.org/10.18637/jss.v093.c01CrossRefGoogle Scholar
Pingree, R.D., Cann, B.L., 1990. Structure, strength and seasonality of the slope currents in the Bay of Biscay region. Journal of the Marine Biological Association of the United Kingdom 70, 857885.CrossRefGoogle Scholar
Polunin, O., Walter, M., 1985. A Guide to the Vegetation of Britain and Europe. Oxford University Press, New York, 320 pp.Google Scholar
Prescott, J.R., Hutton, J.T., 1994. Cosmic ray contributions to dose rates for luminescence and ESR dating: large depths and long-term time variations. Radiation Measurements 23, 497500.CrossRefGoogle Scholar
Prüfer, K., Racimo, F., Patterson, N., Jay, F., Sankararaman, S., Sawyer, S., Heinze, A., et al. , 2014. The complete genome sequence of a Neanderthal from the Altai Mountains. Nature 505, 4349.CrossRefGoogle ScholarPubMed
Prüfer, K., Posth, C., Yu, H., Stoessel, A., Spyrou, M.A., Deviese, T., Mattonai, M., et al. , 2021. A genome sequence from a modern human skull over 45,000 years old from Zlatý kůň in Czechia. Nature Ecology & Evolution 5, 820825.CrossRefGoogle ScholarPubMed
Ramsey, C.B., 2009. Dealing with outliers and offsets in radiocarbon dating. Radiocarbon 51, 10231045.CrossRefGoogle Scholar
Rasmussen, S.O., Bigler, M., Blockley, S.P., Blunier, T., Buchardt, S.L., Clausen, H.B., Cvijanovic, I., et al. , 2014. A stratigraphic framework for abrupt climatic changes during the Last Glacial period based on three synchronized Greenland ice-core records: refining and extending the INTIMATE event stratigraphy. In: Rasmussen, S.O., Brauer, A., Moreno, A., Roche, D. (Eds.), Special Issue, Dating, Synthesis, and Interpretation of Palaeoclimatic Records and Model-data Integration: Advances of the INTIMATE project (INTegration of Ice core, Marine and TErrestrial records, COST Action ES0907). Quaternary Science Reviews 106, 1428.Google Scholar
Rees-Jones, J., 1995. Optical Dating of Young Sediments Using Fine-Grain Quartz. Ancient TL 13, 914.Google Scholar
Reimer, P.J., Austin, W.E.N., Bard, E., Bayliss, A., Blackwell, P.G., Ramsey, C.B., Butzin, M., et al. , 2020. The IntCal20 Northern Hemisphere Radiocarbon Age Calibration Curve (0–55 cal kBP). Radiocarbon 62, 725757.CrossRefGoogle Scholar
Reimer, P.J., Bard, E., Bayliss, A., Beck, J.W., Blackwell, P.G., Ramsey, C.B., Buck, C.E., et al. , 2013. IntCal13 and Marine13 Radiocarbon Age Calibration Curves 0–50,000 Years cal BP. Radiocarbon 55, 18691887.CrossRefGoogle Scholar
Reimer, P.J., Reimer, R.W., 2001. 14CHRONO Marine20 Reservoir Database 2001. A marine reservoir correction database and on-line interface. Radiocarbon 43, 461–3 [WWW Document]. URL http://calib.org/marine/ (accessed 2.25.22).CrossRefGoogle Scholar
Richerson, P.J., Bettinger, R.L., Boyd, R., 2005. Evolution on a restless planet: Were environmental variability and environmental change major drivers of human evolution. In: Wuketits, F.M., Ayala, F.J. (Eds.), Handbook of Evolution: The Evolution of Living Systems (Including Hominids). Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp. 223242.CrossRefGoogle Scholar
Roche, D., Paillard, D., Cortijo, E., 2004. Constraints on the duration and freshwater release of Heinrich event 4 through isotope modelling. Nature 432, 379382.CrossRefGoogle ScholarPubMed
Roucoux, K.H., de Abreu, L., Shackleton, N.J., Tzedakis, P.C., 2005. The response of NW Iberian vegetation to North Atlantic climate oscillations during the last 65kyr. In: Maddy, D., Long, A.J., Bridgland, D. (Eds.), Special Issue, Quaternary Land-ocean Correlation, Quaternary Science Reviews 24, 16371653.Google Scholar
Ruebens, K., McPherron, S.J.P., Hublin, J.-J., 2015. On the local Mousterian origin of the Châtelperronian: integrating typo-technological, chronostratigraphic and contextual data. Journal of Human Evolution 86, 5591.CrossRefGoogle ScholarPubMed
Sanchez Goñi, M.F., Harrison, S.P., 2010. Millennial-scale climate variability and vegetation changes during the Last Glacial: concepts and terminology. In: Sanchez Goñi, M.F., Harrison, S.P. (Eds.), Special Issue, Vegetation Response to Millennial-scale Variability during the Last Glacial. Quaternary Science Reviews 29, 28232827.Google Scholar
Sánchez Goñi, M.F., Eynaud, F., Turon, J.L., Shackleton, N.J., 1999. High resolution palynological record off the Iberian margin: direct land-sea correlation for the Last Interglacial complex. Earth and Planetary Science Letters 171, 123137.CrossRefGoogle Scholar
Sánchez Goñi, M.F., Turon, J.-L., Eynaud, F., Gendreau, S., 2000. European climatic response to millennial-scale changes in the atmosphere-ocean system during the Last Glacial Period. Quaternary Research 54, 394403.CrossRefGoogle Scholar
Sánchez Goñi, M.F., Landais, A., Fletcher, W.J., Naughton, F., Desprat, S., 2008. Contrasting impacts of Dansgaard-Oeschger events over a western European latitudinal transect modulated by orbital parameters. Quaternary Science Reviews 27, 11361151.CrossRefGoogle Scholar
Sánchez Goñi, M.F., Bard, E., Landais, A., Rossignol, L., d'Errico, F., 2013. Air–sea temperature decoupling in western Europe during the last interglacial-glacial transition. Nature Geoscience 6, 837841.CrossRefGoogle Scholar
Sánchez Goñi, M.F., Desprat, S., Daniau, A.-L., Bassinot, F.C., Polanco-Martínez, J.M., Harrison, S.P., Allen, J.R.M., et al. , 2017. The ACER pollen and charcoal database: a global resource to document vegetation and fire response to abrupt climate changes during the last glacial period. Earth System Science Data 9, 679695.CrossRefGoogle Scholar
Sankararaman, S., Patterson, N., Li, H., Pääbo, S., Reich, D., 2012. The date of interbreeding between Neandertals and modern humans. PLoS Genetics 8, e1002947. https://doi.org/10.1371/journal.pgen.1002947.CrossRefGoogle ScholarPubMed
Sepulchre, P., Ramstein, G., Kageyama, M., Vanhaeren, M., Krinner, G., Sánchez-Goñi, M.-F., d'Errico, F., 2007. H4 abrupt event and late Neanderthal presence in Iberia. Earth and Planetary Science Letters 258, 283292.CrossRefGoogle Scholar
Serryn, P., 1994. Atlas Bordas Géographique. Bordas, Paris.Google Scholar
Shao, Y., Limberg, H., Klein, K., Wegener, C., Schmidt, I., Weniger, G.-C., Hense, A., Rostami, M., 2021. Human-existence probability of the Aurignacian techno-complex under extreme climate conditions. Quaternary Science Reviews 263, 106995. https://doi.org/10.1016/j.quascirev.2021.106995.CrossRefGoogle Scholar
Slimak, L., Zanolli, C., Higham, T., Frouin, M., Schwenninger, J.-L., Arnold, L.J., Demuro, M., et al. , 2022. Modern human incursion into Neanderthal territories 54,000 years ago at Mandrin, France. Science Advances 8, eabj9496.CrossRefGoogle ScholarPubMed
Soressi, M., Roussel, M., Rendu, W., Primault, J., Rigaud, S., Texier, P.-J., Richter, D., et al. , 2010. Les Cottés (Vienne). Nouveaux travaux sur l'un des gisements de référence pour la transition Paléolithique moyen/supérieur. In: Buisson-Catil, J., Primault, J. (Eds.), Préhistoire Entre Vienne et Charente. Hommes et Sociétés Du Paléolithique. Mémoire de l'Association des Publications Chauvinoises 38, 221234.Google Scholar
Stockmarr, J., 1971. Tablets with spores used in absolute pollen analysis. Pollen et Spores 13, 615621.Google Scholar
Stokes, S., Ingram, S., Aitken, M.J., Sirocko, F., Anderson, R., Leuschner, D., 2003. Alternative chronologies for late Quaternary (Last Interglacial–Holocene) deep sea sediments via optical dating of silt-sized quartz. Quaternary Science Reviews 22, 925941.CrossRefGoogle Scholar
Stuiver, M., Braziunas, T.F., 1993. Modeling atmospheric 14C influences and 14C ages of marine samples to 10,000 BC. Radiocarbon 35, 137189.CrossRefGoogle Scholar
Taborin, Y., 1993. Shells of the French Aurignacian and Perigordian. In: Knecht, H., Pike-Tay, A., White, R. (Eds.), Before Lascaux: the Complete Record of the Early Upper Paleolithic. CRC Press, Boca Raton, Florida, pp. 211227.Google Scholar
Talamo, S., Aldeias, V., Goldberg, P., Chiotti, L., Dibble, H.L., Guérin, G., Hublin, J.-J., et al. , 2020. The new 14C chronology for the Palaeolithic site of La Ferrassie, France: the disappearance of Neanderthals and the arrival of Homo sapiens in France. Journal of Quaternary Science 35, 961973.CrossRefGoogle Scholar
Tartar, E., Teyssandier, N., Bon, François, Liolios, D., 2005. Equipement de chasse, équipement domestique: une distinction efficace? Réflexion sur la notion d'investissement technique dans les industries aurignaciennes. In: Astruc, L., Bon, F., Léa, V., Phillibert, P.-Y.M. et S. (Eds.), Normes Techniques et Pratiques Sociales: De La Simplicité Des Outillages Pré- et Protohistoriques. Antibes, France, pp. 107117.Google Scholar
Thiel, C., Buylaert, J.-P., Murray, A., Terhorst, B., Hofer, I., Tsukamoto, S., Frechen, M., 2011a. Luminescence dating of the Stratzing loess profile (Austria)—testing the potential of an elevated temperature post-IR IRSL protocol. In: Frechen, M. (Ed.), Special Issue, Loess in Eurasia. Quaternary International 234, 2331.Google Scholar
Thiel, C., Buylaert, J.-P., Murray, A., Tsukamoto, S., 2011b. On the applicability of post-IR IRSL dating to Japanese loess. Geochronometria 38, 369378.CrossRefGoogle Scholar
Thomsen, K.J., Murray, A.S., Jain, M., Bøtter-Jensen, L., 2008. Laboratory fading rates of various luminescence signals from feldspar-rich sediment extracts. Radiation Measurements 43, 14741486.CrossRefGoogle Scholar
Timmermann, A., 2020. Quantifying the potential causes of Neanderthal extinction: abrupt climate change versus competition and interbreeding. Quaternary Science Reviews 238, 106331. https://doi.org/10.1016/j.quascirev.2020.106331.CrossRefGoogle Scholar
Tisnérat-Laborde, N., Paterne, M., Métivier, B., Arnold, M., Yiou, P., Blamart, D., Raynaud, S., 2010. Variability of the northeast Atlantic sea surface Δ14C and marine reservoir age and the North Atlantic Oscillation (NAO). In: Van de Flierdt, T., Frank, M. (Eds.), Special Theme: Case Studies of Neodymium Isotopes in Paleoceanography. Quaternary Science Reviews 29, 26332646.Google Scholar
Turon, J.-L., Bourillet, J.-F., Delpeint, A., Simplet, L., 2004. MD141—ALIÉNOR. Rapport scientifique à bord du Marion Dufresne II. https://www.documentation.eauetbiodiversite.fr/notice/00000000015df4b6ddfeb7c3feea69a3.Google Scholar
Vernot, B., Akey, J.M., 2015. Complex History of Admixture between Modern Humans and Neandertals. The American Journal of Human Genetics 96, 448453.CrossRefGoogle ScholarPubMed
Vieillevigne, E., Bourguignon, L., Ortega, I., Guibert, P., 2008. Analyse croisée des données chronologiques et des industries lithiques dans le grand sud-ouest de la France (OIS 10 à 3). Paleo 20. https://doi.org/10.4000/paleo.1715.Google Scholar
Vignoles, A., Banks, W.E., Klaric, L., Kageyama, M., Cobos, M., Romero-Alvarez, D., 2020. Investigating relationships between technological variability and ecology in the Middle Gravettian (ca. 32-28 ky cal. BP) in France. OSF Preprints. Peer Communicty in Archaeology. https://doi.org/10.31219/osf.io/ud3hj.Google Scholar
Villanea, F.A., Schraiber, J.G., 2019. Multiple episodes of interbreeding between Neanderthal and modern humans. Nature Ecology & Evolution 3, 3944.CrossRefGoogle ScholarPubMed
Visbeck, M.H., Hurrell, J.W., Polvani, L., Cullen, H.M., 2001. The North Atlantic Oscillation: past, present, and future. Proceedings of the National Academy of Sciences 98. https://doi.org/10.1073/pnas.231391598.CrossRefGoogle ScholarPubMed
Waelbroeck, C., Lougheed, B.C., Riveiros, N.V., Missiaen, L., Pedro, J., Dokken, T., Hajdas, I., et al. , 2019. Consistently dated Atlantic sediment cores over the last 40 thousand years. Scientific Data 6, 165. https://doi.org/10.1038/s41597-019-0173-8.CrossRefGoogle ScholarPubMed
Weber, O., Jouanneau, J.-M., Ruch, P., Mirmand, M., 1991. Grain-size relationship between suspended matter originating in the Gironde estuary and shelf mud-patch deposits. Marine Geology 96, 159165.CrossRefGoogle Scholar
Wintle, A.G., Huntley, D.J., 1979. Thermoluminescence dating of a deep-sea sediment core. Nature 279, 710712.CrossRefGoogle Scholar
Wintle, A.G., Huntley, D.J., 1980. Thermoluminescence dating of ocean sediments. Canadian Journal of Earth Sciences 17, 348360.CrossRefGoogle Scholar
Wolff, E.W., Chappellaz, J., Blunier, T., Rasmussen, S.O., Svensson, A., 2010. Millennial-scale variability during the last glacial: The ice core record. In: Sanchez Goñi, M.F., Harrison, S.P. (Eds.), Special Issue, Vegetation Response to Millennial-scale Variability during the Last Glacial. Quaternary Science Reviews 29, 28282838.Google Scholar
Wood, R.E., Arrizabalaga, A., Camps, M., Fallon, S., Iriarte-Chiapusso, M.-J., Jones, R., Maroto, J., de la, Rasilla, et al. , 2014. The chronology of the earliest Upper Palaeolithic in northern Iberia: New insights from L'Arbreda, Labeko Koba and La Viña. Journal of Human Evolution 69, 91109.CrossRefGoogle ScholarPubMed
Ziemen, F.A., Kapsch, M.-L., Klockmann, M., Mikolajewicz, U., 2019. Heinrich events show two-stage climate response in transient glacial simulations. Climate of the Past 15, 153168.CrossRefGoogle Scholar
Supplementary material: File

Fourcade et al. supplementary material

Fourcade et al. supplementary material 1

Download Fourcade et al. supplementary material(File)
File 489.6 KB
Supplementary material: File

Fourcade et al. supplementary material

Fourcade et al. supplementary material 2

Download Fourcade et al. supplementary material(File)
File 570.4 KB
Supplementary material: File

Fourcade et al. supplementary material

Fourcade et al. supplementary material 3

Download Fourcade et al. supplementary material(File)
File 59 KB