Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-26T19:54:50.101Z Has data issue: false hasContentIssue false

Environmental changes and the Migration Period in northern Germany as reflected in the sediments of Lake Dudinghausen

Published online by Cambridge University Press:  20 January 2017

Mirko Dreßler*
Affiliation:
Universität Rostock, Institut für Biowissenschaften, Allgemeine und Spezielle Botanik, Wismarsche Str. 8, D-18051 Rostock, Germany
Uwe Selig
Affiliation:
Universität Rostock, Institut für Biowissenschaften, Ökologie, Albert Einstein Str. 3, 18059 Rostock, Germany
Walter Dörfler
Affiliation:
Universität Kiel, Institut für Ur- und Frühgeschichte, Johanna-Mestorf-Straβe 2-6, 24118 Kiel, Germany
Sven Adler
Affiliation:
Universität Rostock, Institut für Biowissenschaften, Allgemeine und Spezielle Botanik, Wismarsche Str. 8, D-18051 Rostock, Germany
Hendrik Schubert
Affiliation:
Universität Rostock, Institut für Biowissenschaften, Ökologie, Albert Einstein Str. 3, 18059 Rostock, Germany
Thomas Hübener*
Affiliation:
Universität Rostock, Institut für Biowissenschaften, Allgemeine und Spezielle Botanik, Wismarsche Str. 8, D-18051 Rostock, Germany
*
Corresponding authors. Fax: +49 381 498 6202. E-mail address:[email protected]
Corresponding authors. Fax: +49 381 498 6202. E-mail address:[email protected]

Abstract

Paleolimnological techniques were used to identify environmental changes in and around Lake Dudinghausen (northern Germany) over the past 4800 yr. Diatom-inferred total phosphorus (DI-TP) changes identify four phases of high nutrient levels (2600–2200 BC, 1050–700 BC, 500 BC–AD 100 and AD 1850–1970). During these high DI-TP phases, fossil pollen, sediment geochemistry and archaeological records indicate human activities in the lake catchment. Although the same paleo-indicators suggest increased human settlement and agriculture activity during the late Slavonic Age, the Medieval Time and the Modern Time (AD 1000–1850), DI-TP levels were low during this period. In the sediments, iron and total phosphorus were high from ∼AD 100 to 1850, likely due to increased inflow of iron-rich groundwater into the lake. Increased iron input would have lead to a simultaneous binding and precipitation of phosphate in the upper sediment and overlying water column. As a result, anthropogenic impact on Lake Dudinghausen was masked by these phosphorus-controlling processes from AD 1000 to 1850 and was not evident by means of DI-TP. In accordance with fossil pollen, sediment geochemistry and limited archaeological records, DI-TP levels were low from AD 100–1000. Groundwater levels likely rose during this period as the climate gradually changed toward colder and/or moister conditions. Such climate change likely led to reduced settlement activities and forest regeneration in the catchment area. Our results are concordant with similar studies from central Europe which indicate rapid decreasing settlement activities from AD 100 to 1000.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andersen, J.M. An ignition method for determination of total phosphorus in lake sediments. Water Research 10, (1976). 329331.Google Scholar
Behre, K.-E. The interpretation of anthropogenic indicators in pollen diagrams. Pollen et Spores 23, (1981). 225245.Google Scholar
Bennion, H. A diatom-phosphorus transfer function for shallow eutrophic ponds in Southeast England. Hydrobiologia 275/276, (1994). 391410.CrossRefGoogle Scholar
Beug, H.J. Leitfaden der Pollenbestimmung für Mitteleuropa und angrenzende Gebiete. (1961). Fischer, Stuttgart.Google Scholar
Bigler, C., Larocque, I., Peglar, S.M., Birks, H.J.B., and Hall, R.I. Quantitative multiproxy assessment of long-term patterns of Holocene environmental change from a small lake near Abisko, northern Sweden. The Holocene 12, (2002). 481496.CrossRefGoogle Scholar
Bloch, H., (1956). Aufnahmebericht zur geologischen Übersichtskartierung des MTB 2039. Archiv des Geologischen Landesamtes Mecklenburg-Vorpommern, Güstrow.Google Scholar
Brugam, R.B., McKeever, K., and Kolesa, L. A diatom-inferred water depth reconstruction for an Upper Peninsula, Michigan, lake. Journal of Paleolimnology 20, (1998). 267276.Google Scholar
Bunsen, M. Encyclopedia of the Roman Empire. (1992). Facts on file (PALS), New York.Google Scholar
Collins, R. Early medieval Europe. 300–1000. 2nd ed. (1999). Macmillan, Basingstoke.Google Scholar
Dean, W.E. Physical properties, mineralogy, and geochemistry of Holocene varved sediments from Elk Lake, Minnesota. Bradbury, J.P., and Dean, W.E. Elk Lake, Minnesota: Evidence for Rapid Climate Change in the North-Central United States. Geological Society of America Special Paper vol. 276, (1993). Geological Society of America, Boulder, CO. 135157.CrossRefGoogle Scholar
Dearing, J.A. Sedimentary indicators of lake-level changes in the humid temperate zone: a critical review. Journal of Paleolimnology 18, (1997). 114.CrossRefGoogle Scholar
Digerfeldt, G. Reconstruction and regional correlation of Holocene lake-level fluctuations in Lake Bysjön, South Sweden. Boreas 17, (1988). 165182.Google Scholar
Dörfler, W. Pollenanalytische Untersuchungen zur Vegetations- und Siedlungsgeschichte im Süden des Landkreises Cuxhaven, Niedersachsen. Probleme der Küstenforschung im südlichen Nordseegebiet 17, (1989). 175.Google Scholar
Dörfler, W. Landscape development about 6500 B.P. and about 500 A.D.. Kosel, Schleswig-Holstein. Paleoklimaforschung 8. Special Issue: ESF Project European Paleoclimate and Men vol. 3, (1992). 161167.Google Scholar
Dunemann, L., and Schwedt, G. Zur Analytik von Elementbindungsformen in Bodenlösungen mit Gelchromatographie und chemischen Reaktionsdetektoren. Fresenius' Journal of Analytical Chemistry 317, (1984). 394399.Google Scholar
Eusterhues, K., Lechterbeck, J., Schneider, J., and Wolf-Brozio, U. Late- and Postglazial evolution of Lake Steisslingen (I). Sedimentary history, palynological record and inorganic geochemical indicators. Paleogeography, Paleoclimatology, Paleoecology 187, (2002). 341371.Google Scholar
Fægri, K., and Iversen, J. Textbook of pollen analysis. (1989). John Wiley and Sons, Chichester.Google Scholar
Gächter, R., and Müller, B. Why the phosphorus retention of lakes does not necessarily depend on the oxygen supply to their sediment surface. Limnology and Oceanography 48, (2003). 929933.CrossRefGoogle Scholar
Garbe-Schönberg, C.D., Wiethold, J., Butenhoff, D., Utech, C., and Stoffers, P. Geochemical and palynological record in annually laminated sediments from Lake Belau (Schleswig-Holstein) reflecting paleoecology and human impact over 9000 a. Meyniana 50, (1998). 4770.Google Scholar
Geary, P. The Myth of Nations. The Medieval Origins of Europe. (2002). University Press, Princeton.Google Scholar
Hammarlund, D., Björck, S., Buchardt, B., Israelson, C., and Thomsen, C.T. Rapid hydrological changes during the Holocene revealed by stable isotope records of lacustrine carbonates from Lake Igelsjön, southern Sweden. Quaternary Science Reviews 22, (2003). 353370.Google Scholar
Hammarlund, D., Velle, G., Wolfe, B.B., Edwards, T.W.D., Barnekow, L., Bergmann, J., Holmgren, S., Lamme, S., Snowball, I., Wohlfarth, B., and Possnert, G. Palaeolimnological and sedimentary responses to Holocene forest retreat in the Scandes Mountains, west-central Sweden. The Holocene 14, (2004). 862876.CrossRefGoogle Scholar
Hastje, T.J., and Tibshirani, R.J. Generalized Additive Models. (1990). Chapman and Hall/CRC Boca Raton, London.Google Scholar
Hirota, J., and Szyper, J.P. Separation of total particulate carbon in inorganic and organic components. Limnology and Oceanography 20, (1975). 896900.Google Scholar
Hoagland, K.D., and Peterson, C.G. Effects of light and wave distribution on vertical zonation of attached microalgae in a large reservoir. Journal of Phycology 26, (1990). 450457.CrossRefGoogle Scholar
Hoelzmann, P., Keding, B., Berke, H., Kröpelin, S., and Kruse, H.-J. Environmental change and archaeology: lake evolution and human occupation in the Eastern Sahara during the Holocene. Paleogeography, Paleoclimatology, Paleoecology 169, (2001). 193217.Google Scholar
Hollnagel, A. Die jungslawische Inselsiedlung im Hohen Sprenzer See bei Dudinghausen, Kreis Güstrow. Ausgrabungen und Funde. Nachrichtenblatt für Vor- und Frühgeschichte 16, (1971). 217222.Google Scholar
Holub, J. Notes on the terminology and classification of synanthropic plants with examples from the Czechoslovakian flora. Saussurea 2, (1974). 518.Google Scholar
Hurtig, T. Physische Geographie von Mecklenburg. (1957). Deutscher Verlag der Wissenschaften, Berlin.Google Scholar
Itkonen, A., Marttila, V., Meriläinen, J.J., and Salonenv, P. 8000-year history of palaeoproductivity in a large boreal lake. Journal of Paleolimnology 21, (1999). 271294.Google Scholar
Joynt, E.H. III, and Wolfe, A.P. Paleoenvironmental inference models from sediment diatom assemblages in Baffin Island lakes (Nunavut, Canada) and reconstruction of summer water temperature. Canadian Journal of Fisheries and Aquatic Sciences 58, (2001). 12221243.Google Scholar
Juggins, S., (2003). C2 User Guide Version 1.3, Software for ecological and palaeoecological data analysis and visualisation. http://www.staff.ncl.ac.uk/stephen.juggins.Google Scholar
Kalbe, L., and Werner, H. Das Sediment des Kummerower Sees. Untersuchungen des Chemismus und der Diatomeenflora. Internationale Revue der Gesamten Hydrobiologie 59, (1974). 755782.Google Scholar
Kaplan, M.R., Wolfe, A.P., and Miller, G.H. Holocene environmental variability in Southern Greenland inferred from Lake sediments. Quaternary Research 68, (2002). 149159.CrossRefGoogle Scholar
Karge, W., Schmied, H., and Münch, E. Die Geschichte Mecklenburgs. (2000). Hinstorff, Rostock.Google Scholar
Krammer, K., and Lange-Bertalot, H. Süßwasserflora von Mitteleuropa, Bacillariophyceae. Band 2.1., 2.2., 2.3. and 2.4.. (1986–1991). Fischer Verlag, Stuttgart.Google Scholar
LAWA Länderarbeitsgemeinschaft Wasser: Gewässerbewertung-Stehende Gewässer. Vorläufige Richtlinie für eine Erstbewertung von natürlich entstandenen Seen nach trophischen Kriterien. (1998). Kulturbuch-Verlag, Berlin.Google Scholar
Liesch, G.C.F. Die Familie Duding und deren Güter Dechow und Dudinghausen. Jahrbücher des Vereins für mecklenburgische Geschichte und Altertumskunde 13, (1848). 398401.Google Scholar
Little, J.L., Hall, R.I., Quinlan, R., and Smol, J.P. Past trophic status and hypolimnetic anoxia during eutrophication and remediation of Gravenhurst Bay, Ontario: comparison of diatoms, chironomids, and historical records. Canadian Journal of Fisheries and Aquatic Sciences 57, (2000). 333341.Google Scholar
Lotter, A.F., and Bigler, C. Do Diatoms in the Swiss Alps reflect the length of ice-cover?. Aquatic Sciences 62, (2000). 125141.Google Scholar
Lotter, A.F., and Birks, H.J.B. The Holocene palaeolimnology of Sägistalsee and its environmental history—a synthesis. Journal of Paleolimnology 30, (2003). 333342.Google Scholar
Lowe, J.J., Accorsi, C.A., Mazzanti, M.B., Bishop, A., Forlani, S., van der Kaars, L., Mercuri, A.M., Rivalenti, C., Torri, P., and Watson, C. Pollen stratigraphy of sediment sequences from lakes Albano and Nemi (near Rome) and from the central Adriatic, spanning the interval from oxygen isotope Stage 2 to the present day. Memorie dell'Istituto Italiano di Idrobiologia 55, (1996). 7198.Google Scholar
Ludwig, J.A., and Reynolds, J.F. Statistical Ecology: a Primer on Methods and Computing. (1988). John Wiley and Sons, New York.Google Scholar
Malcolm-Lawes, D.J., and Koon, H.W. Determination of orthophosphate in water and soil using a flow analyser. Analyst 15, (1990). 6567.Google Scholar
Manning, P.G., Murphy, T.P., and Prepas, E.E. Intensive formation of vivianite in the bottom sediments of mesotrophic Narrow Lake, Alberta. Canadian Mineralogist 29, (1991). 7785.Google Scholar
Manning, P.G., Prepas, E.E., and Serediak, M.S. Pyrite and vivianite intervals in the bottom sediments of eutrophic Baptiste Lake, Alberta. Canadian Mineralogist 37, (1999). 593601.Google Scholar
Mehl, D., Thiele, V., and Berlin, A. Das Warnowgebiet-ein physiographischer und landschaftshistorischer Abriß. Schriftenreihe LAUN 2, (1994). 332.Google Scholar
Meltzer, D.J. Human responses to middle Holocene (Altithermal) climates on the North American Great Plains. Quaternary Research 52, (1999). 404416.Google Scholar
Miettinen, J.O., Kukkonen, M., and Simola, H. Hindcasting baseline values for water colour and total phosphorus concentration in lakes using sedimentary diatoms—implications for lake typology in Finland. Boreal Environment Research 10, (2005). 3143.Google Scholar
Ministry of Environment Mecklenburg-Vorpommern Gewässergütebericht Mecklenburg-Vorpommern 1996/1997: Zustand der Gewässergüte von Fließ-Stand-und Küstengewässern und der Grundwasserbeschaffenheit in Mecklenburg-Vorpommern. (1998). Herausgeber Umweltministerium Mecklenburg-Vorpommern, Schwerin.Google Scholar
Mirek, Z. Classification of synanthropic plants in relation to vegetation changes during the Holocene. Veröffentlichungen des Geobotanischen Institutes der ETH, Stiftung Rübel 106, (1991). 122132.Google Scholar
Moore, P.D., Webb, J.A., and Collinson, M.E. Pollen Analysis. (1991). Blackwell, Oxford.Google Scholar
Müller-Wille, M., Dörfler, W., Meier, D., and Kroll, H. The transformation of rural society, economy and landscape during the first Millennium AD: archaeological and palaeobotanical contributions from Northern Germany and Southern Scandinavia. Geografiska Annaler 70, (1988). 5368.Google Scholar
Murray, T.E., and Gottgens, J.F. Historical changes in phosphorous accumulation in a small lake. Hydrobiologia 345, (1997). 3944.CrossRefGoogle Scholar
Nesje, A., Dahl, S.O., Matthews, J.A., and Berrisford, M.S. A ∼4500-yr record of river floods obtained from a sediment core in Lake Atnsjøen, eastern Norway. Journal of Paleolimnology 25, (2001). 329342.Google Scholar
Neumann, T., Christiansen, C., Clasen, S., Emeis, K.-C., and Kunzendorf, H. Geochemical records of salt-water inflows into the deep basin of the Baltic Sea. Continental Shelf Research 17, (1997). 95115.Google Scholar
Odgaard, B.V. The Holocene vegetation history of northern West Jutland, Denmark. Opera Botanika 123, (1994). 1171.Google Scholar
Overbeck, F. Botanisch-geologische Moorkunde unter besonderer Berücksichtigung der Moore Nordwestdeutschlands als Quellen zur Vegetations-, Klima- und Siedlungsgeschichte. (1975). Karl Wachholtz Verlag, Neumünster.Google Scholar
Pandey, D.N., Gupta, A.K., and Anderson, D.M. Rainwater harvesting as an adaptation to climate change. Current Science 85, (2003). 4659.Google Scholar
Priester, H. Zur Geschichte der Gemeinde Kritzkow-Weitendorf. Die Mecklenburgische Heimat 8, (1929). 5868.Google Scholar
Psenner, R., Pucsko, R., and Sager, M. Die Fraktionierung organischer und anorganischer Phosphorbindungen von Sedimenten-Versuch einer Definition ökologisch wichtiger Fraktionen. Archiv fuer Hydrobiology 70, (1984). 111155.Google Scholar
Punning, J.-M., Kangur, M., Koff, T., and Possnert, G. Holocene lake-level changes and their reflection in the paleolimnological records of two lakes in northern Estonia. Journal of Paleolimnology 29, (2003). 167178.Google Scholar
Punt, W. The Northwest European Pollen Flora I. (1976). Elsevier, Amsterdam.Google Scholar
Punt, W., and Clarke, G.C.S. The Northwest European Pollen Flora II–IV. (1980–1984). Elsevier, Amsterdam.Google Scholar
Rosen, P., Hall, R., Korsman, T., and Renberg, I. Diatom transfer-functions for quantifying past air temperature, pH and total organic carbon concentration from lakes in northern Sweden. Journal of Paleolimnology 24, (2000). 109123.Google Scholar
Rozoy, J.G. The (Re-) population of Northern France between 13,000 and 8000 BP. Quaternary International 49/50, (1998). 6986.Google Scholar
Schoknecht, T., (1996). Pollenanalytische Untersuchungen zur Vegetations-, Siedlungs- und Landschaftsgeschichte in Mittelmecklenburg. Beiträge zur Ur- und Frühgeschichte Mecklenburg-Vorpommerns 29 Archäologisches Landesmuseum M-V (Herausgeber), Schwerin.Google Scholar
Schönfelder, I., Gelbrecht, J., Schönfelder, J., and Steinberg, C.E.W. Relationship between littoral diatoms and their chemical environment in northeastern German lakes and rivers. Journal of Phycology 38, (2002). 6682.Google Scholar
Schulz, M., and Paul, A. Holocene climate variability on centennial-to-millennial time scales: 1. Climate records from the North-Atlantic realm. Wefer, G., Berger, W., Behre, K.-E., and Jansen, E. Climate Development and History of the North-Atlantic Realm. (2002). Springer-Verlag, Berlin, Heidelberg. 4154.Google Scholar
Selig, U., and Schlungbaum, G. Characterisation and quantification of phosphorus release from profundal bottom sediments in two dimictic lakes during summer stratification. Journal of Limnology 62, (2003). 151162.Google Scholar
Selig, U., Hübener, T., Heerkloss, R., and Schubert, H. Vertical gradient of nutrients in two dimictic lakes—influence of phototrophic sulfur bacteria on the nutrient balance. Aquatic Sciences 66, (2004). 247256.Google Scholar
Selig, U., Fischer, K., and Leipe, T. Phosphorus accumulation in lake sediments during the last 14,000 years: description by fractionation techniques and X-ray micro analysis. Journal of Freshwater Ecology 20, (2005). 347359.CrossRefGoogle Scholar
Stone, J.R., and Fritz, S.C. Three dimensional modeling of lacustrine diatom habitat areas: improving paleolimnological interpretation of planktic: benthic ratios. Limnology and Oceanography 49, (2004). 15401548.Google Scholar
Stookey, L.L. Ferrozine—a new spectrophotometric reagent for iron. Analytical Chemistry 2, (1970). 779781.Google Scholar
Stuiver, M., and Polach, H.A. Reporting of 14 C-Data. Radiocarbon 19, (1977). 355363.Google Scholar
Stuiver, M., Reimer, P.J., Bard, E., Beck, J.W., Burr, G.S., Hughen, K.A., Kromer, B., McCormac, F.G., Spurk, J., and van der Pflicht, M. INTCAL 98 radiocarbon age calibration 24,000–0 cal. BP. Radiocarbon 40, (1998). 10411083.Google Scholar
Ter Braak, C.J.F., and Van Dam, H. Inferring pH from diatoms: a comparison of old and new calibration methods. Hydrobiologia 178, (1989). 209223.CrossRefGoogle Scholar
Todd, M. The Northern Barbarians, 100 B.C.-A.D. 300. (1987). Basil Blackwell, New York. PALS Google Scholar
Todd, M. The Early Germans. (2004). Blackwell, Oxford.Google Scholar
Van Geel, B., Buurman, J., and Waterbolk, H.T. Archaeological and palaeoecological indications of an abrupt climate change in The Netherlands, and evidence for climatological teleconnections around 2650 BP. Journal of Quaternary Science 11, (1996). 451460.Google Scholar
Vassiljev, J., and Harrison, S.P. Simulating the Holocene lake-level record of Lake Bysjön, Southern Sweden. Quaternary Research 49, (1998). 6271.Google Scholar
Verardo, D.J., Froelich, P.N., and McIntyre, A. Determination of organic carbon and nitrogen in marine sediments using the Carlo Erba NA-1500 analyser. Deep Sea Research 37, (1990). 157165.Google Scholar
Vos, P.C., and de Wolf, H. Reconstruction of sedimentary environments in Holocene coastal deposits of the southwest Netherlands; the Poortvliet boring, a case study of palaeoenvironmental diatom research. Hydrobiologia 269/270, (1993). 297306.Google Scholar
Wolfram, H. History of the Goths. (1988). University of California Press, Berkeley.Google Scholar
Wolin, J.A., and Duthi, H.C. Diatoms as indicators of water level change in freshwater lakes. Stoermer, E.F., and Smol, J.P. The Diatoms: Applications for the Environmental and Earth Sciences. (1999). Cambridge Univ. Press, 183202.Google Scholar
Yu, S., Zhu, C., Song, J., and Qu, W. Role of climate in the rise and fall of Neolithic cultures on the Yangtze Delta. Boreas 29, (2000). 157165.Google Scholar