Hostname: page-component-f554764f5-68cz6 Total loading time: 0 Render date: 2025-04-22T13:46:36.297Z Has data issue: false hasContentIssue false

Effects of paleoclimatic variables on suitable open habitats for Pleistocene–Holocene megafauna in South America

Published online by Cambridge University Press:  30 December 2024

Célia Cristina Clemente Machado*
Affiliation:
Center of Applied Biological and Social Sciences, Paraíba State University, João Pessoa, Paraíba, 58071-470, Brazil
Vivianne Albano de Lucena
Affiliation:
Center of Applied Biological and Social Sciences, Paraíba State University, João Pessoa, Paraíba, 58071-470, Brazil
Nathália Fernandes Canassa
Affiliation:
Postgraduate Program in Biodiversity and Conservation, Piauí Federal University, Floriano, Piauí, 64808-605, Brazil Postgraduate Program of Biological Sciences – Zoology, Paraíba Federal University, João Pessoa, Paraíba, 58050-585, Brazil
David Holanda de Oliveira
Affiliation:
Paleontology and Evolution Laboratory, Department of Biosciences, Paraíba Federal University, Areia, Paraíba, 58397-000, Brazil
Helder Farias Pereira de Araujo
Affiliation:
Laboratory of Biogeography and Ecosystem Services, Department of Biosciences, Paraíba Federal University, Areia, Paraíba, 58397-000, Brazil
*
Corresponding author: Célia Cristina Clemente Machado; Email: [email protected]

Abstract

The cause of megafauna extinction in South America remains clouded in controversy, since it took place at a time of intense climate change and almost at the same time as the initial human influx into the continent. In this paper, we aimed to assess the effects of climate change on open vegetation habitats and, consequently, on megafauna extinction in South America by using a species distribution model, fossil records, and paleoclimatic projections. In addition, we evaluated the effects of climatic variables on the distribution of suitable habitats across South America. Our results demonstrated alternating intervals of expansion and contraction of suitable areas for megafauna persistence, mainly in response to lower and higher precipitation, in the last 21 ka in all regions of South America. However, the amplitude of this oscillation was more significant in the Brazilian Northeast. In the Andean and Chaco–Pampas regions, greater precipitation stability resulted in greater stability in habitat suitability; therefore, for these regions, other factors must have predominated for the extinction of the megafauna. We therefore concluded that in the Andean and Chaco–Pampas regions, climate change was not solely responsible for the disappearance of megafauna, but in the Brazilian Northeast, it may have been decisive.

Type
Research Article
Copyright
Copyright © The Author(s), 2024. Published by Cambridge University Press on behalf of Quaternary Research Center

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Allentoft, M.E., Heller, R., Oskam, C.L., Lorenzen, E.D., Hale, M.L., Gilbert, M.T.P., Jacomb, C., Holdaway, R.N., Bunce, M., 2014. Extinct New Zealand megafauna were not in decline before human colonization. Proceedings of the National Academy of Sciences 111, 49224927.CrossRefGoogle Scholar
Araújo, T., Machado, H., Mothé, D., Avilla, L.S., 2021. Species distribution modeling reveals the ecological niche extinct megafauna from South America. Quaternary Research 104, 151158.CrossRefGoogle Scholar
Barnosky, A.D., Lindsey, E.L., 2010. Timing of Quaternary megafaunal extinction in South America in relation to human arrival and climate change. Quaternary International 217, 1029.CrossRefGoogle Scholar
Bates, D., Mächler, M., Bolker, B., Walker, S., 2015. Fitting linear mixed-effects models using lme4. Journal of Statistical Software 67, 148.CrossRefGoogle Scholar
Bilenca, D.N., Miñarro, F.O., 2004. Identificación de Áreas Valiosas de Pastizal en las Pampas y Campos de Argentina, Uruguay y sur de Brasil. Fundación Vida Silvestre Argentina, Buenos Aires.Google Scholar
Bond, M., Cerdeño, E., López, G.M., 1995. Los ungulados nativos de América del Sur. In: Alberdi, M.T., Leone, G., Tonni, E.P. (Eds.), Evolución Biológica y Climática de la Región Pampeana Durante los Últimos Cinco Millones de Años. CSIC Monografías 12, pp. 257277.Google Scholar
Bonebrake, T.C., Mastrandrea, M.D., 2010. Tolerance adaptation and precipitation changes complicate latitudinal patterns of climate change impacts. Proceedings of the National Academy of Sciences 107, 1258112586.CrossRefGoogle ScholarPubMed
Brown, J.L., Hill, D.J., Dolan, A.M., Carnaval, A.C., Haywood, A.M., 2018. PaleoClim, high spatial resolution paleoclimate surfaces for global land areas. Scientific Data 5, 19. https://doi.org/10.1038/sdata.2018.254CrossRefGoogle ScholarPubMed
Burney, D.A., Flannery, T.F., 2005. Fifty millennia of catastrophic extinctions after human contact. Trends in Ecology and Evolution 20, 395401.CrossRefGoogle ScholarPubMed
Chen, Z., Wang, W., Fu, J., 2020. Vegetation response to precipitation anomalies under different climatic and biogeographical conditions in China. Scientific Reports 10, 830. https://doi.org/10.1038/s41598-020-57910-1CrossRefGoogle ScholarPubMed
Cione, A.L., Tonni, E.P., Soibelzon, L., 2003. Broken Zig-Zag: Late Cenozoic large mammal and tortoise extinction in South America. Revista del Museo Argentino de Ciencias Naturales “Bernardino Rivadavia” 5, 119.CrossRefGoogle Scholar
Cione, A.L., Tonni, E.P., Soibelzon, L., 2009. Did humans cause the Late Pleistocene-Early Holocene mammalian extinctions in South America in a context of shrinking open areas? In: Haynes, G. (Ed.), American Megafaunal Extinctions at the End of the Pleistocene. Springer Science, Dordrecht, pp. 125144.CrossRefGoogle Scholar
Cuadrelli, F., Zamorano, M., Barasoain, D., Anaya, F., Zurita, A.E., 2023. A peculiar specimen of Panochthus (Xenarthra, Glyptodontidae) from the Eastern Cordillera, Bolivia. Andean Geology 50, 5774.CrossRefGoogle Scholar
Dalapicolla, J., 2016. Tutorial de Modelos de Distribuição de Espécies: Guia Prático Usando o MaxEnt e o ArcGIS 10. Laboratório de Mastozoologia e Biogeografia, Universidade Federal do Espírito Santo, Vitória.Google Scholar
Dantas, M.A.T., Cherkinsky, A., Bocherens, H., Drefahl, M., Bernardes, C., França, L.M., 2017. Isotopic paleoecology of the Pleistocene megamammals from the Brazilian Intertropical Region: feeding ecology (δ13C), niche breadth and overlap. Quaternary Scientific Reviews 170, 152163.Google Scholar
Dantas, M.A.T., Dutra, R.P., Cherkinsky, A., Fortier, D.C., Kamino, L.H.Y., Cozzuol, M.A., Ribeiro, A.S., Vieira, F.S., 2013. Paleoecology and radiocarbon dating of the Pleistocene megafauna of the Brazilian Intertropical Region. Quaternary Research 79, 6165.CrossRefGoogle Scholar
Dantas, M.A.T., Pansani, T.R., Asevedo, L., Araújo, T., França, L.M., Aragão, W.S., Santos, F.S., Cravo, E., Waldherr, F.R., Ximenes, C.L., 2024. Potential historically intertropical stable areas during the Late Quaternary of South America. Journal of Quaternary Science (in press). https://doi.org/10.1002/jqs.3624CrossRefGoogle Scholar
De Luliis, G., Bargo, M.S., Vizcaíno, S.F., 2001. Variation in skull morphology and mastication in the fossil giant armadillos Pampatherium spp. and allied genera (Mammalia: Xenarthra: Pampatheriidae), with comments on their systematics and distribution. Journal of Vertebrate Paleontology 20, 743754.CrossRefGoogle Scholar
Ding, R., Nnamchi, H.C., Yu, J., Li, T., Sun, C., Li, J., Tseng, Y., et al., 2023. North Atlantic oscillation controls multidecadal changes in the North Tropical Atlantic-Pacific connection. Nature Communications 14, 110. https://doi.org/10.1038/s41467-023-36564-3Google ScholarPubMed
Elith, J., Leathwick, J.R., 2009. Species Distribution Models: ecological explanation and prediction across space and time. Annual Review of Ecology, Evolution, and Systematics 40, 677697.CrossRefGoogle Scholar
Elith, J., Philips, S.J., Hastie, T., Dudik, M., Chee, Y.E. Yates, C.J., 2011. A statistical explanation of MaxEnt for ecologists. Biodiversity Research 17, 4357.Google Scholar
Ervynck, A., 1999. Possibilities and limitations of the use of archaeozoological data in biogeographical analysis: a review with examples from the Benelux region. Belgian Journal of Zoology 129, 125138.Google Scholar
Etnier, M.A., 2002. The Effects of Human Hunting on Northern Fur Seal (Callorhinus ursinus) Migration and Breeding Distributions in the Late Holocene. PhD thesis, University of Washington, Seattle, USA.Google Scholar
Faith, J.T., 2011. Late Pleistocene climate change, nutrient cycling, and the megafaunal extinctions in North America. Quaternary Science Reviews 30, 16751680.CrossRefGoogle Scholar
Faith, J.T., 2014. Late Pleistocene and Holocene mammal extinctions on continental Africa. Earth-Science Reviews 128, 105121.CrossRefGoogle Scholar
Faria, F.H.C., Carvalho, I.S., Júnior, H.I.A., Ximenes, C.L., Facincani, E.M., 2023. Holocene megafauna in Brazil: new records in Itapipoca (Ceará) and Miranda (Mato Grosso do Sul). In: Machado, A.F., Machado, E.F., Pohlmann Bulsing, K. (Eds.), XII Simpósio Brasileiro de Paleontologia de Vertebrados, Santa Maria e Quarta Colônia, RS: Boletim de Resumos. Sociedade Brasileira de Paleontologia, Santa Maria, RS, p. 47.Google Scholar
Ferraz, K.M.P.M.B., de Siqueira, M.F., Alexandrino, E., da Luz, D.T.A., do Couto, H.T.Z., 2012. Environmental suitability of a highly fragmented and heterogeneous landscape for forest bird species in south-eastern Brazil. Environmental Conservation 39, 316324.CrossRefGoogle Scholar
Firestone, R.B., West, A., Kennett, J.P., Becker, L., Bunch, T.E., Revay, Z.S., Schultz, P.H., et al., 2007. Evidence for an extraterrestrial impact 12,900 years ago that contributed to the megafaunal extinctions and the Younger Dryas cooling. Proceedings of the National Academy of Sciences 104, 1601616021.CrossRefGoogle Scholar
Florian, H., 2022. DHARMa: Residual Diagnostics for Hierarchical (Multi-Level / Mixed) Regression Models. R package version 0.4.6. http://florianhartig.github.io/DHARMa/Google Scholar
Fordham, D.A., Saltré, F., Haythorne, S., Wigley, T.M.L., Otto-Bliesner, B.L., Chan, K.C., Brook, B.W., 2017. PaleoView: a tool for generating continuous climate projections spanning in the last 21 000 years at regional and global scales. Ecography 40, 13481358.CrossRefGoogle Scholar
Goodman, S.M., Jungers, W.L., 2014. Extinct Madagascar: Picturing the Island's Past. University of Chicago Press, Chicago.CrossRefGoogle Scholar
Grayson, D.K., 1981. A critical view of the use of archaeological vertebrates in paleoenvironmental reconstruction. Journal of Ethnobiology 1, 2838.Google Scholar
Grayson, D.K., 2007. Deciphering North American Pleistocene extinctions. Journal of Anthropological Research 63, 185213.CrossRefGoogle Scholar
Grayson, D.K., 1984. Nineteenth-century explanations of Pleistocene extinctions: a review and analysis. In: Martin, P.S., Klein, R.G. (Eds.), Quaternary Extinctions: A Prehistoric Revolution. University of Arizona Press, Tucson, pp. 5-39.Google Scholar
Harrison, X.A., Donaldson, L., Correa-Cano, M.E., Evans, J., Fisher, D.N., Goodwin, C.E.D., Robinson, B.S., Hodgson, D.J., Inger, R., 2018. A brief introduction to mixed effects modelling and multi-model inference in ecology. PeerJ 6, e4794. https://doi.org/10.7717/peerj.4794CrossRefGoogle ScholarPubMed
Heinrich, H., 1988. Origin and consequences of cyclic ice rafting in the northeast Atlantic Ocean during the past 130,000 years. Quaternary Research 29, 142152.CrossRefGoogle Scholar
Hijmans, R.J., Phillips, S., Leathwick, J., Elith, J., 2021. dismo: Species Distribution Modeling. R package version 1.3-5. https://CRAN.R-project.org/package=dismoGoogle Scholar
Jorge, M.L.S.P., Galetti, M., Ribeiro, M.C., Ferraz, K.M.P.M.B., 2013. Mammal defaunation as surrogate of trophic cascades in hotspot. Biological Conservation 163, 4957.CrossRefGoogle Scholar
Koch, P.L., Barnosky, A.D., 2006. Late Quaternary extinctions: state of the debate. Annual Review of Ecology, Evolution, and Systematics 37, 215250.CrossRefGoogle Scholar
Lima-Ribeiro, M.S., Diniz-Filho, J.A.F., 2013. Modelos Ecológicos e a Extinção da Megafauna: Clima e Homem na América do Sul. Editora Cubo, São Carlos, São Paulo, Brasil.Google Scholar
Lima-Ribeiro, M.S., Nogués-Bravo, D., Terribile, L.C., Batra, P., Diniz-Filho, J.A.F., 2013. Climate and humans set the place and time of Proboscidean extinction in late Quaternary of South America. Palaeogeography, Palaeoclimatology, Palaeoecology 392, 546556.CrossRefGoogle Scholar
Liu, C., White, M., Newell, G., 2013. Selecting thresholds for the prediction of species occurrence with presence-only data. Journal of Biogeography 40, 778789.CrossRefGoogle Scholar
Lopes, R.P., Pereira, J.C., Kerber, L., Dillenburg, S., 2020. The extinction of the Pleistocene megafauna in the pampa of the southern Brazil. Quaternary Science Reviews 242, 106428. https://doi.org/10.1016/j.quascirev.2020.106428CrossRefGoogle Scholar
Lyman, R.L., 1995. Determining when rare (zoo-)archaeological phenomena are truly absent. Journal of Archaeological Method and Theory 2, 369424.CrossRefGoogle Scholar
Lyman, R.L., 2008. Estimating the magnitude of data asymmetry in palaeozoological biogeography. International Journal of Osteoarchaeology 18, 8594.CrossRefGoogle Scholar
MacPhee, R.D., 1997. The 40,000-year plague: humans, hyperdisease, and first-contact extinctions. In: Goodman, S.M., Patterson, B.D. (Eds.), Natural Change and Human Impact in Madagascar. Smithsonian Institution Press, Washington, DC, pp. 169217.Google Scholar
Mao, Y., Zou, Y., Alves, L.M., Macau, E.E.N., Taschetto, A.S., Santoso, A., Kurths, J., 2022. Phase coherence between surrounding oceans enhances precipitation shortages in Northeast Brazil. Geophysical Research Letters 49, 110. https://doi.org/10.1029/2021GL097647CrossRefGoogle Scholar
Marengo, J.A., Alves, L.M., Alvala, R.C.S., Cunha, A.P., Brito, S., Maraes, O.L.L., 2018. Climatic characteristics of the 2010-2016 drought in the semiarid Northeast Brazil region. Anais da Academia Brasileira de Ciências 90, 19731985.CrossRefGoogle ScholarPubMed
Martin, P.S., 1967. Prehistoric overkill. In: Martin, P.S., Wright, H.E. (Eds.), Pleistocene Extinctions. Yale University Press, New Haven, CT, pp. 75120.Google Scholar
Meijer, H.J.M., Louys, J., O'Connor, S., 2019. First record of avian extinctions from the Late Pleistocene and Holocene of Timor Leste. Quaternary Science Reviews 203, 170184.CrossRefGoogle Scholar
Metcalf, J.L., Turney, C., Barnett, R., Martin, F., Bray, S.C., Vilstrup, J.T., Orlando, L., et al., 2016. Synergistic roles of climate warming and human occupation in Patagonian megafaunal extinctions during the Last Deglaciation. Science Advances 2, p.e1501682. https://doi.org/10.1126/sciadv.1501682CrossRefGoogle ScholarPubMed
Miller, G., Magee, J., Smith, M., Spooner, N., Baynes, A., Lehman, S., Fogel, M., et al., 2016. Human predation contributed to the extinction of the Australian megafaunal bird Genyornis newtoni ~47 ka. Nature Communications 7, 10496. https://doi.org/10.1038/ncomms10496CrossRefGoogle Scholar
Nascimento, N.F.F., Agne, C.E.Q., Batalha-Filho, H., Araujo, H.F.P., 2021. Population history of the Blue-backed Manakin (Chiroxiphia pareola) supports Plio-Pleistocene diversification in the Amazon and shows a recent connection with the Atlantic Forest. Journal of Ornithology 162, 549563.CrossRefGoogle Scholar
Nogués-Bravo, D., 2009. Predicting the past distribution of species climatic niches. Global Ecology and Biogeography 18, 521531.CrossRefGoogle Scholar
Notaro, M., Liu, Z., Gallimore, R.G., Williams, J.W., Gutzler, D.S., Collins, S., 2010. Complex seasonal cycle of ecohydrology in the Southwest United States. Journal of Geophysical Research Atmospheres 115, 120. https://doi.org/10.1029/2010JG001382CrossRefGoogle Scholar
Oksanen, J., Blanchet, F.G., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., Minchin, P.R., et al., 2022. Vegan: Community Ecology Package. R package version 2.6-4. The Comprehensive R Archive Network. http://cran.r-project.orgGoogle Scholar
Ovaskainen, O., Soininen, J., 2011. Making more out of sparse data: hierarchical modeling of species communities. Ecology 92, 289295.CrossRefGoogle ScholarPubMed
Pansani, T.R., Muniz, F.P., Cherkinsky, A., Pacheco, M.L.A.F., Dantas, M.A.T., 2019. Isotopic paleoecology (δ13C, δ18O) of Late Quaternary megafauna from Mato Grosso do Sul and Bahia States, Brazil. Quaternary Science Reviews 221, 105864. https://doi.org/10.1016/j.quascirev.2019.105864CrossRefGoogle Scholar
Peçanha, W.T., Althoff, S.L., Galiano, D., Quintela, F.M., Maestri, R., Gonçalves, G.L., Freitas, T.R.O., 2017. Pleistocene climatic oscillations in Neotropical open areas: refuge isolation in the rodent Oxymycterus nasutus endemic to grasslands. PLoS One 12. https://doi.org/10.1371/journal.pone.0187329CrossRefGoogle ScholarPubMed
Pérez, L.M., Scillato-Yané, G.J., Vizcaíno, S.F., 2000. Estudio morfofuncional del aparato hioideo de Glyptodon cf. G. clavipes (Cingulata, Glyptodontidae). Ameghiniana 37, 293299.Google Scholar
Phillips, S.J., Anderson, R.P., Schapire, R.E., 2006. Maximum entropy modeling of species geographic distributions. Ecological Modelling 190, 231259.CrossRefGoogle Scholar
Pollock, L.J., Tingley, R., Morris, W.K., Golding, N., O'Hara, R.B., Parris, K.M., Vesk, P.A., McCarthy, M.A., 2014. Understanding co-occurrence by modelling species simultaneously with a Joint Species Distribution Model (JSDM). Methods in Ecology and Evolution 5, 397406.CrossRefGoogle Scholar
Prates, L., Perez, I., 2021. Late Pleistocene South American megafaunal extinctions associated with rise of Fishtail points and human population. Nature Communications 12, 111. https://doi.org/10.1038/s41467-021-22506-4CrossRefGoogle ScholarPubMed
Rothschild, B.M., Laub, R., 2006. Hyperdisease in the late Pleistocene: validation of an early 20th century hypothesis. Naturwissenschaften 93, 557564.CrossRefGoogle Scholar
Saltré, F., Rodríguez-Rey, M., Brook, B.W., Johnson, C.N., Turney, C.S.M., Alroy, J., Cooper, A., et al., 2016. Climate change not to blame for late Quaternary megafauna extinctions in Australia. Nature Communications 7, 10511. https://doi.org/10.1038/ncomms10511CrossRefGoogle Scholar
Silva, J.A., Leal, L.A., Cherkinsky, A., Dantas, M.A.T., 2019. Late Pleistocene meso-megamammals from Anagé, Bahia, Brazil: taxonomy and isotopic paleoecology (δ13C). Journal of South American Earth Sciences 96, 102362. https://doi.org/10.1016/j.jsames.2019.102362CrossRefGoogle Scholar
Stuart, A.J., 2015. Late Quaternary megafaunal extinctions on the continents: a short review. Geological Journal 50, 338363.CrossRefGoogle Scholar
Svenning, J.-C., Lemoine, R.T., Bergman, J., Buitenwerf, R., Le Roux, E., Lundgren, E., Mungi, N., Pedersen, R.Ø., 2024. The late-Quaternary megafauna extinctions: patterns, causes, ecological consequences and implications for ecosystem management in the Anthropocene. Cambridge Prisms: Extinction 2, e5, https://doi.org/10.1017/ext.2024.4.Google Scholar
Tonni, E.P., Scillato Yané, G.J., 1997. Una nueva localidad con mamíferos pleistocenos en el norte de Argentina. Aspectos paleozoogeográficos. In: Associação Brasileira de Estudos do Quaternário (Org.), VI Congresso da Associação Brasileira de Estudos do Quaternário. ABEQUA, Curitiba, Paraná, Brazil, pp. 345348.Google Scholar
Vale, C.G., Tarroso, P., Brito, J.C., 2014. Predicting species distribution at range margins: testing the effects of study area extent, resolution and threshold selection in the Shara-Sahel transition zone. Diversity and Distributions 20, 2033.CrossRefGoogle Scholar
Varela, L., Fariña, R.A., 2016. Co-occurrence of mylodontid sloths and insights on their potential distributions during the late Pleistocene. Quaternary Research 85, 6674.CrossRefGoogle Scholar
Varela, S., Lobo, J.M., Hortal, J., 2011. Using species distribution models in paleobiogeography: a matter of data, predictors and concepts. Palaeogeography, Palaeoclimatology, Palaeoecology 310, 451463.CrossRefGoogle Scholar
Villavicencio, N.A., 2016. Late Quaternary megafaunal extinctions in southern Patagonia and their relation to environmental changes and human impacts. PAGES Magazine 24, 5859.CrossRefGoogle Scholar
Villavicencio, N.A., Corcoran, D., Marquet, P.A., 2019. Assessing the causes behind the Late Quaternary extinction of horses in South America using species distribution. Frontiers in Ecology and Evolution 7, 114. https://doi.org/10.3389/fevo.2019.00226CrossRefGoogle Scholar
Xavier, M.C.T., Dantas, M.A.T., Silva-Santana, C.C., 2018. Megafauna Pleistocênica da microrregião de Senhor do Bonfim, Bahia. Estudos Geológicos 28, 1931.Google Scholar
Zurita, A.E., Miño-Boilini, A.R., 2012. The Pleistocene Glyptodontidae Gray, 1869 (Xenarthra: Cingulata) of Colombia and some considerations about the South American Glyptodontinae. Revista Brasileira de Paleontologia 15, 273280.CrossRefGoogle Scholar
Zurita, A., Scillato-Yané, G.J., Carlini, A.A., 2005. Paleozoogeographic, biostratigraphic, and systematic aspects of the Genus Sclerocalyptus Ameghino, 1891 (Xenarthra, Glyptodontidae) of Argentina. Journal of South American Earth Sciences 20, 121129.CrossRefGoogle Scholar
Supplementary material: File

Machado et al. supplementary material 1

Machado et al. supplementary material
Download Machado et al. supplementary material 1(File)
File 52.1 KB
Supplementary material: File

Machado et al. supplementary material 2

Machado et al. supplementary material
Download Machado et al. supplementary material 2(File)
File 2.3 MB
Supplementary material: File

Machado et al. supplementary material 3

Machado et al. supplementary material
Download Machado et al. supplementary material 3(File)
File 1.7 MB
Supplementary material: File

Machado et al. supplementary material 4

Machado et al. supplementary material
Download Machado et al. supplementary material 4(File)
File 27.8 KB