Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-07T17:03:29.864Z Has data issue: false hasContentIssue false

The Eem Stable Isotope Record along the GRIP Ice Core and Its Interpretation

Published online by Cambridge University Press:  20 January 2017

Sigfus J. Johnsen
Affiliation:
The Niels Bohr Institute of Astronomy, Physics, and Geophysics, Department of Geophysics, University of Copenhagen, Haraldsgade 6, DK-2200 Copenhagen, Denmark
Henrik B. Clausen
Affiliation:
The Niels Bohr Institute of Astronomy, Physics, and Geophysics, Department of Geophysics, University of Copenhagen, Haraldsgade 6, DK-2200 Copenhagen, Denmark
Willi Dansgaard
Affiliation:
The Niels Bohr Institute of Astronomy, Physics, and Geophysics, Department of Geophysics, University of Copenhagen, Haraldsgade 6, DK-2200 Copenhagen, Denmark
Niels S. Gundestrup
Affiliation:
The Niels Bohr Institute of Astronomy, Physics, and Geophysics, Department of Geophysics, University of Copenhagen, Haraldsgade 6, DK-2200 Copenhagen, Denmark
Claus U. Hammer
Affiliation:
The Niels Bohr Institute of Astronomy, Physics, and Geophysics, Department of Geophysics, University of Copenhagen, Haraldsgade 6, DK-2200 Copenhagen, Denmark
Henrik Tauber
Affiliation:
The Niels Bohr Institute of Astronomy, Physics, and Geophysics, Department of Geophysics, University of Copenhagen, Haraldsgade 6, DK-2200 Copenhagen, Denmark

Abstract

A 3029-m-long deep ice core extending nearly to bedrock has been drilled at the very top of the Greenland ice sheet (Summit) by the Greenland Ice-core Project (GRIP), an international European joint effort organized by the European Science Foundation. The ice core reaches back to 250,000 yr B.P. according to dating based partly on stratigraphic methods and partly on ice-flow modeling. A continuous and detailed stable isotope (δ18O) profile along the entire core depicts dramatic temperature changes in Greenland through the last two glacial cycles, including abrupt climatic shifts during the Eem/Sangamon Interglaciation, which is elsewhere recorded as a warm and stable period. The stratigraphic continuity of the Eemian layers has therefore been scrutinized. New ice core studies, comprising cloudy band observations, deconvolution, and frequency analyses, lead to the conclusion that the climate instability suggested during the Eem Interglaciation in Greenland is likely to be real, though no conclusive evidence is available. Whereas latitudinal displacements of the North Atlantic Ocean current are considered the immediate cause of the glacial climate instability, longitudinal displacements may be the immediate cause of the Eemian instability. If so, the Eemian climate changes will be much subdued outside the Arctic region and will probably only be recognizable in sedimentary sequences of high sensitivity and temporal resolution.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bard, E. Arnold, M. Fairbanks, R. G., and Hamelin, B. (1993). 230Th-2MU and 14C ages obtained by mass spectrometry on corals. Radiocarbon 35, 191199.CrossRefGoogle Scholar
Behre, K.-E., and van der Plicht, . (1992). Towards an absolute chronology for the last glacial period in Europe: Radiocarbon dates from Oerl, northern Germany. Vegetation History and Archaeobotany 1, 111117.CrossRefGoogle Scholar
Bond, G. Broecker, W. Johnsen, S. J. McManus, J. Labeyrie, L. Jouzel, J., and Bonani, G. (1993). Correlations between climate records from North Atlantic sediments and Greenland ice. Nature 365, 143147.CrossRefGoogle Scholar
Broecker, W, S. Peteet, D. M., and Rind, D. (1985). Does the oceanatmosphere system have more than one stable mode of operation? Nature 315, 2126.CrossRefGoogle Scholar
Dabrowski, M. J. (1971). Palynochronological Materials—Eemian Interglacial. Bulletin de I’Academie Polonaise de Science, Serie Science Terre XIX, 113.Google Scholar
Dansgaard, W. (1964). Stable isotopes in precipitation. Tellus 16, 436468.CrossRefGoogle Scholar
Dansgaard, W. Johnsen, S. J. Clausen, H. B., and Langway, C. C. (1971). Climate record revealed by the Camp Century ice core. In“The Late Cenozoic Glacial Ages” (Tbrekian, K. K., Ed.), pp. 3754. Yale Univ. Press, New Haven, CT.Google Scholar
Dansgaard, W. Clausen, H. B. Gundestmp, N. S. Hammer, C. U. Johnsen, S. J. Kristinsdottir, P., and Reeh, N. (1982), A new Greenland deep ice core. Science 218, 12731277.CrossRefGoogle ScholarPubMed
Dansgaard, W. Johnsen, S. J. Clausen, H. B. Dahl-Jensen, D. Gutidestrup, N. S. Hammer, C. U. Hvidberg, C. S. Steffensen, J. P. Sveinbjomsdottir, S. E. Jouzel, J., and Bond, G. (1993). Evidence for general instability of past climate from a 250-kyr ice-core record. Nature 364, 218220.CrossRefGoogle Scholar
Ekholm, S., and Keller, K. (1993). Gravity and GSP survey on the Summit of the Greenland Ice sheet 1991-1992. National Survey and Cadastre, Denmark, Geodetic Division, Technical Report 6, 426.Google Scholar
GRIP members (1993). Climate instability during the last interglacial period recorded in the GRIP ice core. Nature 364, 203207.CrossRefGoogle Scholar
Grootes, P. M. Stuiver, M. White, J. W. C. Johnsen, S. J., and Jouzel, J. (1993). Comparison of oxygen isotope records from the GISP2 and GRIP Greenland ice cores. Nature 366, 552554.CrossRefGoogle Scholar
Guiot, J. de Beaulieu, J. L. Cheddadi, R. David, F. Ponel, P., and Reille, M. (1993). The climate in Western Europe during the last Glacial/I nterglacial cycle derived from pollen and insect remains. Palaeogeography, Palaeoclimatology, Palaeoecology 103, 7393.CrossRefGoogle Scholar
Hammer, C. U. (1980). Acidity of polar ice cores in relation to absolute dating, past volcanism, and radio-echoes. Journal of Glaciology 25, 359372.CrossRefGoogle Scholar
Hammer, C. U.. Clausen, H. B. Dansgaard, W. Gundestrup, N. Johnsen, S. J., and Reeh, N. (1978). Dating of Greenland ice cores by flow models, isotopes, volcanic debris, and continental dust. Journal of Glaciology 20, 326.CrossRefGoogle Scholar
Hempel, L., and Thyssen, F. (1993). Deep radio echo soundings in the vicinity of GRIP and GISP2 drill sites, Greenland. Polarforschung 62(1), 113.Google Scholar
Johnsen, S. J. (1978). Stable isotope homogenization of polar fim and ice. In “Proc of Symp. on Isotopes and Impurities in Snow and Ice, Int. Ass. of Hydrol. Sci., Commission of Snow and Ice, I.U.G.G. XVI, General Assembly, Grenoble Aug./Sept., 1975,” IAHS-AISH, Publication, Vol. 118, pp. 210219. International Association of Hydrological Sciences, Wellingford, UK.Google Scholar
Johnsen, S. J. Clausen, H. B. Dansgaard, W. Fuhrer, K. Gundestrup, N. Hammer, C. U. Iversen, P. Steffensen, J. P. Jouzel, J., and Stauffer, B. (1992a). Irregular glacial interstadials recorded in a new Greenland ice core. Nature 3 59, 311313.CrossRefGoogle Scholar
Johnsen, S. J. Clausen, H. B. Dansgaard, W. Gundestrup, N, S. Hansson, M. Jonsson, P. Steffensen, J. P., and Svembjomsdottir, A. E. (1992b). A “deep” ice core from East Greenland. Meddelelser om Grfintand, Geoscience 29, 122.Google Scholar
Johnsen, S. J. Dansgaard, W., and White, J. W. C. (1989). The origin of Arctic precipitation under present and glacial conditions. Tellus 41B, 452468.CrossRefGoogle Scholar
Johnsen, S. J., and Dansgaard, W. (1992). On flow mode] dating of stable isotope records from Greenland ice cores. In “Proceedings of the NATO Workshop ‘The Last Deglaciation: Absolute and Radiocarbon Chronologies’ held in Erice, Italy December 10-12, 1991,” Vol. 12, pp. 1324. NATO ASI series. Google Scholar
Jouzel, J. Barkov, N. I. Bamola, J. M. Bender, M. Chappeilaz, Genthon, J. C. Kotlyakov, V. M. Lipenkov, V. Lorius, C. Petit, J. R. Raynaud, D. Raisbeck, G. Ritz, C. Stievenard, M. Yiou, F., and Yiou, P. (1993). Extending the Vostok ice-core record of paleoclimate to the penultimate glacial period. Nature 364, 407412.CrossRefGoogle Scholar
Keigwin, L. D. Curry, W. B. Lehman, S. J., and Johnsen, S. J. (1994). The role of the deep ocean in North Atlantic climate change between 70 and 130 kyr ago. Nature 371, 323326.CrossRefGoogle Scholar
Kellogg, T. B. (1980). Paleoclimatology and paleo-oceanography of the Norwegian and Greenland seas: Glacial-interglacial contrasts. Boreas 9, 115137.CrossRefGoogle Scholar
Martinson, D. G. Pisias, N. G. Hays, J, D. Imbrie, J. Moore, T. C. Jr., and Shakelton, N. J. (1987). Age dating and the orbital theory ofthe Ice Ages: Development of a high-resolution 0 to 300.000-year chronostratigraphy, Quaternary Research 27, 129.CrossRefGoogle Scholar
McManus, J. E Bond, G. C. Broecker, W. S. Johnsen, S. J. Labeyrie, L., and Higgins, S. (1994). High-resolution climate records from the North Atlantic during the last interglacial. Nature 371, 326329.CrossRefGoogle Scholar
Menke, B., and Tynni, R. (1984). Das Eemian Interglazial und das Weichhel Friisglazial von Rederstall/Dithmarschen und ihre Bedeutung fiir die mitteleuropaische Jungpleistozan-Gliederung. Geologise he Jahrbuch A76, 1117.Google Scholar
Muller, H. (1974). Pollenanalytische Untersuchungen und Jahresschichten-zahlungen an der eem-zeitlichen Kieselgur von Bispingen/Luhe. Geologisches Jahrbuch. A21, 149169.Google Scholar
Oeschger, H. Beer, J. Siegenthaler, U. Stauffer, B. Dansgaard, W., and Langway, C. C. Jr., (1984). Late glacial climate history from ice cores. In “Climate Processes and Climate Sensitivity.” AGU Geophysical monograph 29 (Hansen, J. E. and Takahashi, T., Eds.), Vol. 5, pp. 299306. Maurice Ewing.CrossRefGoogle Scholar
Reeh, N. (1991). The last interglacial as recorded in the Greenland ice sheet and Canadian Arctic ice caps. Quaternary International 10-12, 123142.CrossRefGoogle Scholar
Shaffer, G., and Bendtsen, J. (1994). Role of the Bering Strait in controlling North Atlantic ocean circulation and climate. Nature 367, 354357.CrossRefGoogle Scholar
Sowers, T. Bender, M. Raynaud, D. Korotkevich, Y. S., and Orchardo, J. (1991). The 8180 of atmospheric 02 from air inclusions in the Vostok ice core: Timing of C02 and ice volume changes during the penultimate deglaciation. Paleoceanography 6, 679696.CrossRefGoogle Scholar
Staffelbach, T. Stauffer, B., and Oeschger, H. (1988). A detailed analysis of the rapid changes in ice-core parameters during the last Ice Age. Annals of Glaciology 10, 167170.CrossRefGoogle Scholar
Taylor, K. C. Hammer, C. J. Alley, R. B. Clausen, H. B. Dahl-Jensen, D. Gow, A. J. Gundestrup, N. S. Kipfstuhl, J. Moore, J. C., and Waddington, E. D. (1993). Electric conductivity measurements from the GISP2 and GRIP Greenland ice cores. Nature 366, 549552.CrossRefGoogle Scholar
Thouveny, N. Beaulieu de, J.-L. Bonifay, E. Creer, K. M. Guiot, J. Icole, M. Johnsen, S. Jouzel, J. Reille, M. Williams, T., and Williams, D. (1994). A high resolution record of the last climate cycle in Western Europe from magnetic susceptibility in Maar lake sequences. Nature 371, 503506.CrossRefGoogle Scholar
Tzedakis, P. C. Bennett, K. D., and Magri, D. (1994). Climate and the pollen record. Nature 370, 513.CrossRefGoogle Scholar
Ulrych, T. J., and Bishop, T. N. (1975). Maximum entropy spectral analysis and autoregressive decomposition. Reviews of Geophysics 13, 183200.CrossRefGoogle Scholar
Weaver, A. J., and Hughes, T. M. C. (1994). Rapid interglacial climate fluctuations driven by North Atlantic ocean circulation. Nature 367, 447450.CrossRefGoogle Scholar
Woillard, G. M. (1978). Grande Pile peat bog: A continuous pollen record for the last 140,000 years. Quaternary Research 9, 121.CrossRefGoogle Scholar