Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-23T21:25:21.513Z Has data issue: false hasContentIssue false

East Asian winter monsoon evolution since the late Pliocene based on a pollen record from Lake Xingkai, northeast Asia

Published online by Cambridge University Press:  18 September 2019

Shouzhen Xin*
Affiliation:
State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China University of Chinese Academy of Sciences, Beijing 100049, China
Ji Shen*
Affiliation:
State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China University of Chinese Academy of Sciences, Beijing 100049, China
Wenfang Zhang
Affiliation:
State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
Weiwei Sun
Affiliation:
State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
Xiayun Xiao
Affiliation:
State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
*
*Corresponding authors at: Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing 210008, China. E-mail addresses: [email protected] (S. Xin); [email protected] (J. Shen).
*Corresponding authors at: Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing 210008, China. E-mail addresses: [email protected] (S. Xin); [email protected] (J. Shen).

Abstract

A 328.58 m drill core (XK12) was recovered from lacustrine–alluvial sediments in the Xingkai Basin, northeast China, with the aim of obtaining a high-resolution pollen record of East Asian winter monsoon (EAWM) evolution since 3.6 Ma. An index based on the pollen record of thermophilous trees and terrestrial herbs is used as an indicator of winter temperature conditions controlled by the EAWM, at the glacial–interglacial scale. Primary age control was established based on lithostratigraphy and magnetostratigraphy, and then the pollen index was correlated to the LR04 global benthic δ18O record and finally tuned to Earth orbital obliquity to produce a high-resolution astronomical time scale. The pollen record indicates that the EAWM underwent two stepwise enhancements at 2.8 and 1.6 Ma. These events are consistent with paleoclimatic records of mean quartz grain size from the Chinese Loess Plateau, and they are also in accord with the initiation and intensification of Northern Hemisphere glaciation. Our findings suggest that the variability of the EAWM since 3.6 Ma was primarily controlled by changes in global ice volume and climatic cooling.

Type
Research Article
Copyright
Copyright © University of Washington. Published by Cambridge University Press, 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Amit, R., Enzel, Y., Mushkin, A., Gillespie, A., Batbaatar, J., Crouvi, O., Vandenberghe, J., An, Z.S., 2014. Linking coarse silt production in Asian sand deserts and Quaternary accretion of the Chinese Loess Plateau. Geology 42, 2326.Google Scholar
An, Z.S., Kukla, G., Porter, S.C., Xiao, J.L., 1991. Late Quaternary dust flow on the Chinese Loess Plateau. Catena 18, 125132.Google Scholar
An, Z.S., Wu, G.X., Li, J.P., Sun, Y.B., Liu, Y.M., Zhou, W.J., Cai, Y.J., et al. , 2015. Global monsoon dynamics and climate change. Annual Review of Earth and Planetary Sciences 43, 2977.Google Scholar
Ao, H., Dekkers, M.J., Qin, L., Xiao, G.Q., 2011. An updated astronomical timescale for the Plio-Pleistocene deposits from South China Sea and new insights into Asian monsoon evolution. Quaternary Science Reviews 30, 15601575.Google Scholar
Ao, H., Dekkers, M.J., Xiao, G.Q., Yang, X.Q., Qin, L., Liu, X.D., Qiang, X.K., Chang, H., Zhao, H., 2012. Different orbital rhythms in the Asian summer monsoon records from north and south China during the Pleistocene. Global and Planetary Change 80–81, 5160.Google Scholar
[ATHP] Archaeological Team of Heilongjiang Province, 1979. Excavations at the site of Xingkailiu in Mishan County. [In Chinese with English abstract.] Acta Archaeologica Sinica 4, 491518.Google Scholar
Belyanina, N.I., Belyanin, P.S., Mityureva, E.V., 2009. New evidence for reorientation of the Razdol'naya River flow in the Pleistocene (southern Primor'e region). Russian Journal of Pacific Geology 3, 197200.Google Scholar
Bondarenko, O.V., Blokhina, N.I., Bruch, A.A., Henrot, A.J., Utescher, T., 2017. Quantification of Calabrian vegetation in southern Primory'e (Far East of Russia) using multiple proxies. Palaeogeography, Palaeoclimatology, Palaeoecology 467, 253264.Google Scholar
Bondarenko, O.V., Blokhina, N.I., Utescher, T., 2013. Quantification of Calabrian climate in southern Primory'e, Far East of Russia—an integrative case study using multiple proxies. Palaeogeography Palaeoclimatology Palaeoecology 386, 445458.Google Scholar
[BGMRHP] Burean of Geology and Mineral Resources of Heilongjiang Province, 1993. Regional Geology of Heilongjiang Province. [In Chinese with English summary.] Geological Publishing House, Beijing.Google Scholar
Chang, C.P., 2004. East Asian Monsoon. World Scientific, Singapore.Google Scholar
Chen, J., Chen, Y., Liu, L.W., Ji, J.F., Balsam, W., Sun, Y.B., Lu, H.Y., 2006. Zr/Rb ratio in the Chinese loess sequences and its implication for changes in the East Asian winter monsoon strength. Geochimica et Cosmochimica Acta 70, 14711482.Google Scholar
De Schepper, S., Gibbard, P.L., Salzmann, U., Ehlers, J., 2014. A global synthesis of the marine and terrestrial evidence for glaciation during the Pliocene Epoch. Earth-Science Reviews 135, 83102.Google Scholar
Ding, G.Y., 1988. Neotectonic environment, volcanism and deep-seated earthquakes in the northeast China. [In Chinese with English summary.] Northeastern Seismological Research 4, 511.Google Scholar
Ding, Z., Yu, Z., Rutter, N.W., Liu, T., 1994. Towards an orbital time scale for Chinese loess deposits. Quaternary Science Reviews 13, 3970.Google Scholar
Ding, Z.L., Derbyshire, E., Yang, S.L., Sun, J.M., Liu, T.S., 2005. Stepwise expansion of desert environment across northern China in the past 3.5 Ma and implications for monsoon evolution. Earth and Planetary Science Letters 237, 4555.Google Scholar
Ding, Z.L., Derbyshire, E., Yang, S.L., Yu, Z.W., Xiong, S.F., Liu, T.S., 2002. Stacked 2.6 Ma grain size record from the Chinese loess based on five sections and correlation with the deep sea δ18O record. Paleoceanography 17, 10331053.Google Scholar
Ding, Z.L., Liu, T.S., Rutter, N.W., Yu, Z.W., Guo, Z.T., Zhu, R.X., 1995. Ice-volume forcing of East Asian winter monsoon variations in the past 800,000 years. Quaternary Research 44, 149159.Google Scholar
Ding, Z.L., Rutter, N.W., Sun, J.M., Yang, S.L., Liu, T.S., 2000. Re-arrangement of atmospheric circulation at about 2.6 Ma over northern China: evidence from grain size records of loess-palaeosol and red clay sequences. Quaternary Science Reviews 19, 547558.Google Scholar
Ding, Z.L., Sun, J.M., Rutter, N.W., Rokosh, D., Liu, T.S., 1999. Changes in sand content of loess deposits along a north–south transect of the Chinese Loess Plateau and the implications for desert variations. Quaternary Research 52, 5662.Google Scholar
Dolan, A.M., Haywood, A.M., Hunter, S.J., Tindall, J.C., Dowsett, H.J., Hill, D.J., Pickering, S.J., 2015. Modelling the enigmatic late Pliocene glacial event—Marine Isotope Stage M2. Global and Planetary Change 128, 4760.Google Scholar
Dwyer, G.S., Chandler, M.A., 2009. Mid-Pliocene sea level and continental ice volume based on coupled benthic Mg/Ca palaeotemperatures and oxygen isotopes. Philosophical Transactions of the Royal Society A 367, 157168.Google Scholar
Fang, J.Y., Wang, Z.H., Tang, Z.Y., 2011. Atlas of Woody Plants in China. Springer, Berlin.Google Scholar
Grimm, E.C., 1987. CONISS: a FORTRAN 77 program for stratigraphically constrained cluster analysis by the method of incremental sum of squares. Computers & Geosciences 13, 1335.Google Scholar
Grimm, E.C., 2011. Tilia 1.7.16 Software. Illinois State Museum, Springfield.Google Scholar
Guo, Z.T., Liu, T.S., Fedoroff, N., Wei, L.Y., Ding, Z.L., Wu, N.Q., Lu, H.Y., Jiang, W.Y., An, Z.S., 1998. Climate extremes in loess of China coupled with the strength of deep-water formation in the North Atlantic. Global and Planetary Change 18, 113128.Google Scholar
Guo, Z.T., Sun, B., Zhang, Z.S., Peng, S.Z., Xiao, G.Q., Ge, J.Y., Hao, Q.Z., et al. , 2008. A major reorganization of Asian climate by the early Miocene. Climate of the Past 4, 153174.Google Scholar
Han, J., Fyfe, W.S., Longstaffe, F.J., Palmer, H.C., Yan, F.H., Mai, X.S., 1997. Pliocene–Pleistocene climatic change recorded in fluviolacustrine sediments in central China. Palaeogeography, Palaeoclimatology, Palaeoecology 135, 2739.Google Scholar
Heslop, D., Langereis, C.G., Dekkers, M.J., 2000. A new astronomical timescale for the loess deposits of northern China. Earth and Planetary Science Letters 184, 125139.Google Scholar
Hilgen, F.J., 1991a. Astronomical calibration of Gauss to Matuyama sapropels in the Mediterranean and implication for the geomagnetic polarity time scale. Earth and Planetary Science Letters 104, 226244.Google Scholar
Hilgen, F.J., 1991b. Extension of the astronomically calibrated (polarity) time scale to the Miocene/Pliocene boundary. Earth and Planetary Science Letters 107, 349368.Google Scholar
Hu, S., Goddu, S.R., Appel, E., Verosub, K., 2007. Fine-tuning of age integrating magnetostratigraphy, radiocarbon dating, and carbonate cyclicity: example of lacustrine sediments from Heqing Basin (Yunnan, China) covering the past 1 Myr. Journal of Asian Earth Sciences 30, 423432.Google Scholar
Husing, S.K., Hilgen, F.J., Aziz, H.A., Krijgsman, W., 2007. Completing the Neogene geological time scale between 8.5 and 12.5 Ma. Earth and Planetary Science Letters 253, 340358.Google Scholar
Huybers, P., 2006. Early Pleistocene glacial cycles and the integrated summer insolation forcing. Science 313, 508511.Google Scholar
Imbrie, J., Imbrie, J.Z., 1980. Modeling the climatic response to orbital variations. Science 207, 943953.Google Scholar
Karnauskas, K.B., Mittelstaedt, E., Murtugudde, R., 2017. Paleoceanography of the eastern equatorial Pacific over the past 4 million years and the geologic origins of modern Galapagos upwelling. Earth and Planetary Science Letters 460, 2228.Google Scholar
Kirschvink, J.L., 1980. The least-squares line and plane and the analysis of palaeomagnetic data. Geophysical Journal of the Royal Astronomical Society 62, 699718.Google Scholar
Kolbek, J., Srutek, M., Box, E.O., 2003. Forest Vegetation of Northeast Asia. Kluwer Academic Publishers, London.Google Scholar
Korotkii, A.M., Grebennikova, T.A., Karaulova, L.P., Belyanina, N.I., 2007. Lacustrine transgressions in the late Cenozoic Ussuri-Khanka depression (Primor'e). Russian Journal of Pacific Geology 1, 352365.Google Scholar
Kukla, G., Heller, F., Ming, L.X., Chun, X.T., Sheng, L.T., Sheng, A.Z., 1988. Pleistocene climates in China dated by magnetic-susceptibility. Geology 16, 811814.Google Scholar
Laskar, J., Robutel, P., Joutel, F., Gastineau, M., Correia, A.C.M., Levrard, B., 2004. A long-term numerical solution for the insolation quantities of the earth. Astronomy & Astrophysics 428, 261285.Google Scholar
Li, B.H., Wang, J.L., Huang, B.Q., Li, Q.Y., Jian, Z.M., Zhao, Q.H., Su, X., Wang, P.X., 2004. South China Sea surface water evolution over the last 12 Myr: a south–north comparison from Ocean Drilling Program sites 1143 and 1146. Paleoceanography 19, 10091020.Google Scholar
Li, D.W., Zhao, M.X., Tian, J., 2017. Low-high latitude interaction forcing on the evolution of the 400 kyr cycle in East Asian winter monsoon records during the last 2.8 Myr. Quaternary Science Reviews 172, 7282.Google Scholar
Lisiecki, L.E., 2014. Atlantic overturning responses to obliquity and precession over the last 3 Myr. Paleoceanography 29, 7186.Google Scholar
Lisiecki, L.E., Raymo, M.E., 2005. A Pliocene–Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography 20, 10031019.Google Scholar
Liu, J.Q., 1987. Study on geochronology of the Cenozoic volcanic rocks in northeast China. [In Chinese with English abstract.] Acta Petrologica Sinica 3, 2131.Google Scholar
Liu, J.Q., 1988. The Cenozoic volcanic episodes in noertheast China. [In Chinese with English abstract.] Acta Petrologica Sinica 4, 312.Google Scholar
Liu, L.W., Chen, J., Ji, J.F., Chen, Y., 2004. Comparison of paleoclimatic change from Zr/Rb ratios in Chinese loess with marine isotope records over the 2.6–1.2 Ma BP interval. Geophysical Research Letters 31, 1520415207.Google Scholar
Liu, T.S., 1985. Loess and the Environment. [In Chinese.] Science Press, Beijing.Google Scholar
Liu, T.S., Ding, Z.L., 1993. Stepwise coupling of monsoon circulations to global ice volume variations during the late Cenozioc. Global and Planetary Change 7, 119130.Google Scholar
Liu, T.S., Ding, Z.L., 1998. Chinese loess and the paleomonsoon. Annual Review of Earth and Planetary Sciences 26, 111145.Google Scholar
Long, H., Shen, J., 2015. Sandy beach ridges from Xingkai Lake (NE Asia): timing and response to palaeoclimate. Quaternary International 430, 2131.Google Scholar
Long, H., Shen, J., Wang, Y., Gao, L., Frechen, M., 2015. High-resolution OSL dating of a late Quaternary sequence from Xingkai Lake (NE Asia): chronological challenge of the “MIS 3a mega-paleolake” hypothesis in China. Earth and Planetary Science Letters 428, 281292.Google Scholar
Lu, H.Y., Liu, X.D., Zhang, F.Q., An, Z.S., Dodson, J., 1999. Astronomical calibration of loess–paleosol deposits at Luochuan, central Chinese Loess Plateau. Palaeogeography, Palaeoclimatology, Palaeoecology 154, 237246.Google Scholar
Lu, H.Y., van Huissteden, K., Zhou, J., Vandenberghe, J., Liu, X.D., An, Z.S., 2000. Variability of East Asian winter monsoon in Quaternary climatic extremes in North China. Quaternary Research 54, 321327.Google Scholar
Lyu, A.Q., Lu, H.Y., Zeng, L., Zhang, H.Y., Zhang, E.L., Yi, S.W., 2018. Vegetation variation of loess deposits in the southeastern Inner Mongolia, NE China over the past similar to 1.08 million years. Journal of Asian Earth Sciences 155, 174179.Google Scholar
Ma, L., Sun, Y., Tada, R., Yan, Y., Chen, H., Lin, M., Nagashima, K., 2015. Provenance fluctuations of aeolian deposits on the Chinese Loess Plateau since the Miocene. Aeolian Research 18, 19.Google Scholar
Maher, B.A., Thompson, R., 1992. Paleoclimatic significance of the mineral magnetic record of the Chinese loess and paleosols. Quaternary Research 37, 155170.Google Scholar
Maslin, M.A., Haug, G.H., Sarnthein, M., Tiedemann, R., Erlenkeuser, H., Stax, R., 1995. Northwest Pacific Site 882: the initiation of Northern Hemisphere glaciation. Proceedings of the Ocean Drilling Program Scientific Results 145, 315333.Google Scholar
Miller, K.G., Wright, J.D., Browning, J.V., Kulpecz, A., Kominz, M., Naish, T.R., Cramer, B.S., Rosenthal, Y., Peltier, W.R., Sosdian, S., 2012. High tide of the warm Pliocene: implications of global sea level for Antarctic deglaciation. Geology 40, 407410.Google Scholar
Moore, P.D., Webb, J.A., Collison, M.E., 1991. Pollen Analysis. Blackwell Scientific, Oxford.Google Scholar
Muller, R.A., MacDonald, G.J., 1997. Glacial cycles and astronomical forcing. Science 277, 215218.Google Scholar
Naish, T., Powell, R., Levy, R., Wilson, G., Scherer, R., Talarico, F., Krissek, L., et al. , 2009. Obliquity-paced Pliocene west Antarctic ice sheet oscillations. Nature 458, 322328.Google Scholar
Nicholson, U., van der Es, B., Clift, P.D., Flecker, R., Macdonald, D.I.M., 2016. The sedimentary and tectonic evolution of the Amur River and North Sakhalin Basin: new evidence from seismic stratigraphy and Neogene–recent sediment budgets. Basin Research 28, 273297.Google Scholar
Nowaczyk, N.R., Haltia, E.M., Ulbricht, D., Wennrich, V., Sauerbrey, M.A., Rosén, P., Vogel, H., Francke, A., Meyer-Jacob, C., Andreev, A.A., 2013. Chronology of Lake El'gygytgyn sediments—a combined magnetostratigraphic, palaeoclimatic and orbital tuning study based on multi-parameter analyses. Climate of the Past 9, 24132432.Google Scholar
Ogg, J.G., 2012. Geomagnetic polarity time scale. In: Gradstein, F.M., Ogg, J.G., Schmitz, M.D., Ogg, G.M. (Eds.), The Geologic Time Scale. Elsevier, Boston, pp. 85113.Google Scholar
Palike, H., Frazier, J., Zachos, J.C., 2006. Extended orbitally forced palaeoclimatic records from the equatorial Atlantic Ceara Rise. Quaternary Science Reviews 25, 31383149.Google Scholar
Pavlyutkin, B.I., Petrenko, T.I., 2010. Stratigraphy of Paleogene–Neogene Sediments in Primorye. [In Russian.] Dalnauka, Vladivostok.Google Scholar
Pavlyutkin, B.I., 2015. The genus Quercus (Fagaceae) in the early Oligocene flora of Kraskino, Primorskii Region. Paleontological Journal 49, 668676.Google Scholar
Prokopenko, A.A., Hinnov, L.A., Williams, D.F., Kuzmin, M.I., 2006. Orbital forcing of continental climate during the Pleistocene: a complete astronomically tuned climatic record from Lake Baikal, SE Siberia. Quaternary Science Reviews 25, 34313457.Google Scholar
Qi, F., Zhang, M., Lu, S., Bai, Y., Yang, W., 2015. Quaternary Geology of Sanjiang Plain. [In Chinese.] Geological Press, Beijing.Google Scholar
Qiang, X.K., Li, Z.X., Powell, C.M., Zheng, H.B., 2001. Magnetostratigraphic record of the late Miocene onset of the East Asian monsoon, and Pliocene uplift of northern Tibet. Earth and Planetary Science Letters 187, 8393.Google Scholar
Qiu, S., Wan, E., Wang, P., 1988. Shoreline vicissitude of Lake Xingkai and discovery of ancient source of Songacha River. [In Chinese.] Chinese Science Bulletin 33, 937940.Google Scholar
Qiu, S.W., Wan, E.P., Li, F.H., Wang, P.F., 2007. Development of the plain in the north of the Xingkai Lake and formation of its wetlands. [In Chinese with English abstract.] Wetland Science 5, 153158.Google Scholar
Qiu, S.W., Wang, X.K., Makhinov, A.N., Yan, B.X., Lian, y., Zhu, J.H., Zhang, F.L., Zhang, Z.Q., 2014. Summary of the paleodrainage pattern changes in the Northeast China Plain and its neighboring areas. [In Chinese with English abstract.] Acta Geographica Sinica 69, 16041614.Google Scholar
Raymo, M.E., Ruddiman, W.F., Backman, J., Clement, B.M., Martinson, D.G., 1989. Late Pliocene variation in Northern Hemisphere ice sheets and North Atlantic deep water circulation. Paleoceanography 4, 413446.Google Scholar
Ren, G.Y., Zhang, L.S., 1998. A preliminary mapped summary of Holocene pollen data for northeast China. Quaternary Science Reviews 17, 669688.Google Scholar
Ruddiman, W.F., Raymo, M.E., Martinson, D.G., Clement, B.M., Backman, J., 1989. Pleistocene evolution: Northern Hemisphere ice sheets and North Atlantic Ocean. Paleoceanography 4, 353412.Google Scholar
Ruddiman, W.F., Raymo, M., McIntyre, A., 1986. Matuyama 41,000-year cycles: North Atlantic Ocean and northern hemisphere ice sheets. Earth and Planetary Science Letters 80, 117129.Google Scholar
Shackleton, N.J., Berger, A., Peltier, W.R., 1990. An alternative astronomical calibration of the lower Pleistocene timescale based on ODP site 677. Transactions of the Royal Society of Edinburgh: Earth Sciences 81, 251261.Google Scholar
Shen, J., Wang, S.M., Wang, Y., Qiang, X.K., Xiao, H.F., Xiao, X.Y., 2010. Uplift events of the Qinghai-Tibetan Plateau and environmental evolution of the southwest monsoon since 2.7 Ma, recorded in a long lake sediment core from Heqing, China. Quaternary International 218, 6773.Google Scholar
Sun, W.W., Shen, J., Yu, S.Y., Long, H., Zhang, E.L., Liu, E.F., Chen, R., 2018. A lacustrine record of East Asian summer monsoon and atmospheric dust loading since the last interglaciation from Lake Xingkai, northeast China. Quaternary Research 89, 270280.Google Scholar
Sun, X.J., Wang, P.X., 2005. How old is the Asian monsoon system? Palaeobotanical records from China. Palaeogeography, Palaeoclimatology, Palaeoecology 222, 181222.Google Scholar
Sun, X.J., Weng, C.Y., 1992. Pollen records on the history of mixed conifer and hardwood forest in northeast China. [In Chinese with English abstract.] Acta Botanica Sinica 34, 394401.Google Scholar
Sun, Y.B., An, Z.S., Clemens, S.C., Bloemendal, J., Vandenberghe, J., 2010. Seven million years of wind and precipitation variability on the Chinese Loess Plateau. Earth and Planetary Science Letters 297, 525535.Google Scholar
Sun, Y.B., Clemens, S.C., An, Z.S., Yu, Z.W., 2006a. Astronomical timescale and palaeoclimatic implication of stacked 3.6-Myr monsoon records from the Chinese Loess Plateau. Quaternary Science Reviews 25, 3348.Google Scholar
Sun, Y.B., Lu, H.Y., An, Z.S., 2000. Grain size distribution of quartz isolated from Chinese loess/paleosol. Chinese Science Bulletin 45, 22962298.Google Scholar
Sun, Y.B., Lu, H.Y., An, Z.S., 2006b. Grain size of loess, palaeosol and red clay deposits on the Chinese Loess Plateau: significance for understanding pedogenic alteration and palaeomonsoon evolution. Palaeogeography Palaeoclimatology Palaeoecology 241, 129138.Google Scholar
Svenning, J.C., 2003. Deterministic Plio-Pleistocene extinctions in the European cool-temperate tree flora. Ecology Letters 6, 646653.Google Scholar
Tan, N., Ramstein, G., Dumas, C., Contoux, C., Ladant, J.-B., Sepulchre, P., Zhang, Z.S., De Schepper, S., 2017. Exploring the MIS M2 glaciation occurring during a warm and high atmospheric CO2 Pliocene background climate. Earth and Planetary Science Letters 472, 266276.Google Scholar
Tian, J., Wang, P.X., Chen, R.H., Cheng, X.R., 2005. Quaternary upper ocean thermal gradient variations in the South China Sea: implications for East Asian monsoon climate. Paleoceanography 20, 40074014.Google Scholar
Tian, J., Wang, P.X., Cheng, X.R., Li, Q.Y., 2002. Astronomically tuned Plio–Pleistocene benthic δ18O record from South China Sea and Atlantic–Pacific comparison. Earth and Planetary Science Letters 203, 10151029.Google Scholar
Tian, J., Zhao, Q.H., Wang, P.X., Li, Q.Y., Cheng, X.R., 2008. Astronomically modulated Neogene sediment records from the South China Sea. Paleoceanography 23, 32103229.Google Scholar
Torres, V., Hooghiemstra, H., Lourens, L., Tzedakis, P.C., 2013. Astronomical tuning of long pollen records reveals the dynamic history of montane biomes and lake levels in the tropical high Andes during the Quaternary. Quaternary Science Reviews 63, 5972.Google Scholar
Utescher, T., Bondarenko, O.V., Mosbrugger, V., 2015. The Cenozoic cooling—continental signals from the Atlantic and Pacific side of Eurasia. Earth and Planetary Science Letters 415, 121133.Google Scholar
Wan, S.M., Li, A.C., Clift, P.D., Stuut, J.-B.W., 2007. Development of the East Asian monsoon: mineralogical and sedimentologic records in the northern South China Sea since 20 Ma. Palaeogeography, Palaeoclimatology, Palaeoecology 254, 561582.Google Scholar
Wang, P.X., Li, Q.Y., Tian, J., 2014a. Pleistocene paleoceanography of the South China Sea: progress over the past 20 years. Marine Geology 352, 381396.Google Scholar
Wang, P.X., Wang, B., Cheng, H., Fasullo, J., Guo, Z.T., Kiefer, T., Liu, Z.Y., 2014b. The global monsoon across timescales: coherent variability of regional monsoons. Climate of the Past 10, 20072052.Google Scholar
Wang, P.X., Wang, B., Cheng, H., Fasullo, J., Guo, Z.T., Kiefer, T., Liu, Z.Y., 2017. The global monsoon across time scales: mechanisms and outstanding issues. Earth-Science Reviews 174, 84121.Google Scholar
Wang, Y.X., Yang, J.D., Chen, J., Zhang, K.J., Rao, W.B., 2007. The Sr And Nd isotopic variations of the Chinese Loess Plateau during the past 7 Ma: implications for the East Asian winter monsoon and source areas of loess. Palaeogeography Palaeoclimatology Palaeoecology 249, 351361.Google Scholar
[WCRP] World Climate Research Programme, 2009. WCRP Implementation Plan 2010–2015. WCRP, Geneva.Google Scholar
Xia, Y.M., 1988. Preliminary study on vegetational development and climatic changes in the Sanjiang Plain in the last 12,000 years. [In Chinese with English abstract.] Scientia Geographica Sinica 8, 240249.Google Scholar
Xiao, J., Porter, S.C., An, Z.S., Kumai, H., Yoshikawa, S., 1995. Grain size of quartz as an indicator of winter monsoon strength on the loess plateau of central China during the last 130,000 yr. Quaternary Research 43, 2229.Google Scholar
Xiong, S.F., Ding, Z.L., Jiang, W.Y., Yang, S.L., Liu, T.S., 2003. Initial intensification of East Asian winter monsoon at about 2.75 Ma as seen in the Chinese eolian loess-red clay deposit. Geophysical Research Letters 30, 15241527.Google Scholar
Yan, Y., Ma, L., Sun, Y.B., 2017. Tectonic and climatic controls on provenance changes of fine-grained dust on the Chinese Loess Plateau since the late Oligocene. Geochimica et Cosmochimica Acta 200, 110122.Google Scholar
Yang, S.L., Ding, Z.L., 2010. Drastic climatic shift at ~2.8 Ma as recorded in eolian deposits of China and its implications for redefining the Pliocene–Pleistocene boundary. Quaternary International 219, 3744.Google Scholar
Yi, L., Jian, Z.M., Liu, X.Y., Zhu, Y.H., Zhang, D.J., Wang, Z.F., Deng, C.L., 2018. Astronomical tuning and magnetostratigraphy of Neogene biogenic reefs in Xisha Islands, South China Sea. Science Bulletin 63, 564573.Google Scholar
Yu, Z.W., Ding, Z.L., 1998. An automatic orbital tuning method for paleoclimate records. Geophysical Research Letters 25, 45254528.Google Scholar
Zeng, L., Lu, H.Y., Yi, S.W., Li, Y.X., Lv, A.Q., Zhang, W.C., Xu, Z.W., Wu, H.F., Feng, H., Cui, M.C., 2016. New magnetostratigraphic and pedostratigraphic investigations of loess deposits in north-east China and their implications for regional environmental change during the mid-Pleistocene climatic transition. Journal of Quaternary Science 31, 2032.Google Scholar
Zeng, L., Lu, H.Y., Yi, S.W., Stevens, T., Xu, Z.W., Zhuo, H.X., Yu, K.F., Zhang, H.Z., 2017. Long-term Pleistocene aridification and possible linkage to high-latitude forcing: new evidence from grain size and magnetic susceptibility proxies from loess-paleosol record in northeastern China. Catena 154, 2132.Google Scholar
Zhan, T., Zeng, F., Xie, Y., Yang, Y., Ge, J., Ma, Y., Chi, Y., Kang, C., Jiang, X., Yu, Z., Zhang, J., Li, E., Zhou, X., 2019. Magnetostratigraphic dating of a drill core from the Northeast Plain of China: implications for the evolution of Songnen paleo-Lake. [In Chinese with English abstract.] Chinese Science Bulletin 64, 11791190.Google Scholar
Zhang, J., Li, J.J., Guo, B.H., Ma, Z.H., Li, X.M., Ye, X.Y., Yu, H., et al. , 2016. Magnetostratigraphic age and monsoonal evolution recorded by the thickest Quaternary loess deposit of the Lanzhou region, western Chinese Loess Plateau. Quaternary Science Reviews 139, 1729.Google Scholar
Zhang, X., Guo, Y., Zeng, Z., Fu, Q., Pu, J., 2015. Dynamic evolution of the Mesozoic–Cenozoic basins in the northeastern China. [In Chinese with English abstract.] Earth Science Frontiers 22, 8898.Google Scholar
Zhao, M.X., Wang, P.X., Tian, J., Li, J.R., 2009. Biogeochemistry and the carbon reservoir. In: Wang, P., Li, Q. (Eds.), The South China Sea: Paleoceanography and Sedimentology. Springer, Dordrecht, Netherlands, pp. 439483.Google Scholar
Zijderveld, J.D.A., 1967. A. C. Demagnetization of rocks: analysis of results. In: Collinson, D.W., Creer, K.M., Runcorn, S.K. (Eds.), Methods in Palaeomagnetism. Elsevier, New York, pp. 254286.Google Scholar
Supplementary material: File

Xin et al. supplementary material

Xin et al. supplementary material

Download Xin et al. supplementary material(File)
File 5.5 MB