Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-13T22:46:48.328Z Has data issue: false hasContentIssue false

Dynamics of an active rock glacier (Ötztal Alps, Austria)

Published online by Cambridge University Press:  20 January 2017

Jana Berger*
Affiliation:
Amandastraße 85c, 20357 Hamburg, Germany
Karl Krainer*
Affiliation:
Institute for Geology and Paleontology, University of Innsbruck, A-6020 Innsbruck, Austria
Wolfram Mostler*
Affiliation:
Institute for Geology and Paleontology, University of Innsbruck, A-6020 Innsbruck, Austria
*
1Tel.: +49 40 43910910; fax: +49 40 43910833.
2Tel.: +43 512 5075585.
2Tel.: +43 512 5075585.

Abstract

The rock glacier Innere Ölgrube, located in a small side valley of the Kauner Valley (Ötztal Alps, Austria), consists of two separate, tongue-shaped rock glaciers lying next to each other. Investigations indicate that both rock glaciers contain a core of massive ice. During winter, the temperature at the base of the snow cover (BTS) is significantly lower at the active rock glacier than on permafrost-free ground adjacent to the rock glacier. Discharge is characterized by strong seasonal and diurnal variations, and is strongly controlled by the local weather conditions. Water temperature of the rock glacier springs remains constantly low, mostly below 1°C during the whole melt season. The morphology of the rock glaciers and the presence of meltwater lakes in their rooting zones as well as the high surface flow velocities of >1 m/yr point to a glacial origin. The northern rock glacier, which is bounded by lateral moraines, evolved from the debris-covered tongue of a small glacier of the Little Ice Age with its last highstand around A.D. 1850. Due to the global warming in the following decades, the upper parts of the steep and debris-free ice glacier melted, whereas the debris-covered glacier tongue transformed into an active rock glacier. Due to this evolution and due to the downslope movement, the northern rock glacier, although still active, at present is cut off from its ice and debris supply. The southern rock glacier has developed approximately during the same period from a debris-covered cirque glacier at the foot of the Wannetspitze massif.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ackert, R.P. Jr., (1998). A rock glacier/debris-covered glacier system at Galena Creek, Absaroka Mountains, Wyoming. Geografiska Annaler 80A, 267276.Google Scholar
Barsch, D., (1992). Permafrost creep and rock glaciers. Permafrost and Periglacial Processes 3, 175188.CrossRefGoogle Scholar
Barsch, D., (1996). Rock Glaciers–Indicator for the Present and Former Geoecology in High Mountain Environments. Springer Verlag, Berlin-Stuttgart.Google Scholar
Barsch, D., Fierz, H., Haeberli, W., (1979). Shallow core drilling and bore-hole measurements in permafrost of an active rock glacier near the Grubengletscher, Wallis, Swiss Alps. Arctic and Alpine Research 11, 215228.Google Scholar
Clark, D.H., Steig, E.J., Potter, N. Jr, Gillespie, A.R., (1998). Genetic variability of rock glaciers.. Geografiska Annaler 80A, 175182.CrossRefGoogle Scholar
Finsterwalder, S., (1928). Begleitworte zur Karte des Gepatschferners. Zeitschrift für Gletscherkunde und Glazialgeologie 16, 2041.Google Scholar
Folk, R.L., Ward, W.C., (1957). Brazor River bar: a study in the significance of grain size parameters. Journal of Sedimentological Petrology 27, 326.CrossRefGoogle Scholar
Gerhold, N., (1967). Zur Glazialgeologie der westlichen Ötztaler Alpen. Veröffentlichungen des Museum Ferdinandeum 47, 550.Google Scholar
Gerhold, N., (1969). Zur Glazialgeologie der westlichen Ötztaler Alpen unter Berücksichtigung des Blockgletscherproblems. Veröffentlichungen des Museum Ferdinandeum 49, 4578.Google Scholar
Giardino, J.R., Vick, S.G., (1987). Geologic engineering aspects of rock glaciers. Giardino, J.R., Shroder, F., Vitek, J.D., Rock Glaciers George Allen and Unwin, London.265287.Google Scholar
Haeberli, W., (1973). Die Basistemperaturen der winterlichen Schneedecke als möglicher Indikator für die Verbreitung von Permafrost in den Alpen. Zeitschrift für Gletscherkunde und Glazialgeologie 9, 221227.Google Scholar
Haeberli, W., (1975). Untersuchung zur Verbreitung von Permafrost zwischen Flüelapass und Piz Grialetsch (Graubünden). Mitteilungen VAW ETH Zürich 17, 7221.Google Scholar
Haeberli, W., (1985). Creep of mountain permafrost: internal structure and flow of alpine rock glaciers. Mitteilungen der Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie ETH Zürich 77, 1142.Google Scholar
Haeberli, W., (1990). Scientific environmental and climatic significance of rock glaciers. Memorie della Societa Geologica Italiana 45, 823831.Google Scholar
Hoinkes, G., Thöni, M., (1993). Evolution of the Ötztal–Stubai, Scarl–Campo and Ulten basement units. von Raumer, J.F., Neubauer, F., Pre-Mesozoic Geology in the Alps Springer-Verlag, Stuttgart-Berlin.485494.CrossRefGoogle Scholar
Humlum, O., (1996). Origin of rock glaciers: Observations from Mellemfjord, Disco Island, Central West Greenland. Permafrost and Periglacial Processes 7, 361380.3.0.CO;2-4>CrossRefGoogle Scholar
Humlum, O., (1998). The climatic significance of rock glaciers. Permafrost and Periglacial Processes 9, 375395.3.0.CO;2-0>CrossRefGoogle Scholar
Krainer, K., Mostler, W., (2000a). Reichenkar rock glacier: a glacier derived debris-ice-system in the Western Stubai Alps, Austria. Permafrost and Periglacial Processes 11, 267275.Google Scholar
Krainer, K., Mostler, W., (2000b). Aktive Blockgletscher als Transportsysteme für Schuttmassen im Hochgebirge: Der Reichenkar Blockgletscher in den westlichen Stubaier Alpen. Geoforum Umhausen 1, 2843.Google Scholar
Krainer, K., Mostler, W., (2001). Der aktive Blockgletscher im Hinteren Langtal Kar, Gößnitztal (Schobergruppe, Nationalpark Hohe Tauern, Österreich). Wissenschaftliche Mitteilungen aus dem Nationalpark Hohe Tauern 6, 139168.Google Scholar
Krainer, K., Mostler, W., Span, N., (2002). A glacier-derived, ice-cored rock glacier in the Western Stubai Alps (Austria): evidence from ice exposures and ground penetrating radar investigation. Zeitschrift für Gletscherkunde und Glazialgeologie 38, 1 2134.Google Scholar
Pillewizer, W., (1957). Untersuchungen an Blockströmen der Ötztaler Alpen. Geomorphologische Abhandlungen des Geographischen Institutes der FU Berlin (Otto-Maull-Festschrift) 5, 3750.Google Scholar
Potter, N., (1972). Ice-cored rock glacier, Galena Creek, Northern Absaroka Mountains, Wyoming. Geological Society of America Bulletin 83, 30253038.Google Scholar
Shroder, J.F., Bishop, M.P., Copland, L., Sloan, V.F., (2000). Debris-covered glaciers and rock glaciers in the Nanga Parbat Himalaya, Pakistan. Geografiska Annaler 82A, 1 1731.CrossRefGoogle Scholar
Vitek, J.D., Giardino, J.R., (1987). Rock glaciers: a review of the knowledge base. Giardino, J.R., Shroder, F., Vitek, J.D., Rock Glaciers George Allen and Unwin, London.126.Google Scholar
Wahrhaftig, C., Cox, A., (1959). Rock glaciers in the Alaska Range. Geological Society of America Bulletin 70, 383436.Google Scholar
Whalley, W.B., Martin, H.E., (1992). Rock glaciers Part 2: models and mechanism. Progress in Physical Geography 16, 127186.CrossRefGoogle Scholar
Whalley, W.B., Martin, H.E., (1994). Rock glaciers in Tröllaskagi: their origin and climatic significance. Stötter, J., Wilhelm, F., Environmental Change in Iceland, Münchener Geographische Abhandlungen Reihe vol. B 12, 289308.Google Scholar