Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-18T14:16:21.505Z Has data issue: false hasContentIssue false

Drainage evolution in the Polish Sudeten Foreland in the context of European fluvial archives

Published online by Cambridge University Press:  07 December 2018

Dariusz Krzyszkowski
Affiliation:
Institute of Geography and Regional Development, University of Wrocław, Pl. Uniwersytecki 1, 50-137 Wrocław, Poland
David R. Bridgland*
Affiliation:
Department of Geography, Durham University, Durham DH1 3LE, United Kingdom
Peter Allen
Affiliation:
13 Churchgate, Cheshunt, Hertfordshire EN8 9NB, United Kingdom
Rob Westaway
Affiliation:
School of Engineering, University of Glasgow, Glasgow G12 8QQ, United Kingdom
Lucyna Wachecka-Kotkowska
Affiliation:
Faculty of Geographical Sciences, Department of Geomorphology and Palaeogeography, University of Łódź, Narutowicza 88, 90-139 Łódź, Poland
Jerzy A. Czerwonka
Affiliation:
Wejherowska 9/2, 54-239 Wrocław, Poland
*
*Corresponding author at: Department of Geography, Durham University, Lower Mountjoy, South Road, Durham DH1 3LE, United Kingdom. E-mail address: [email protected] (D.R. Bridgland).

Abstract

Detailed study of subsurface deposits in the Polish Sudeten Foreland, particularly with reference to provenance data, has revealed that an extensive preglacial drainage system developed there in the Pliocene–Early Pleistocene, with both similarities and differences in comparison with the present-day Odra (Oder) system. This foreland is at the northern edge of an intensely deformed upland, metamorphosed during the Variscan orogeny, with faulted horsts and grabens reactivated in the Late Cenozoic. The main arm of preglacial drainage of this area, at least until the early Middle Pleistocene, was the Palaeo–Nysa Kłodzka, precursor of the Odra left-bank tributary of that name. Significant preglacial evolution of this drainage system can be demonstrated, including incision into the landscape, prior to its disruption by glaciation in the Elsterian (Sanian) and again in the early Saalian (Odranian), which resulted in burial of the preglacial fluvial archives by glacial and fluvioglacial deposits. No later ice sheets reached the area, in which the modern drainage pattern became established, the rivers incising afresh into the landscape and forming post-Saalian terrace systems. Issues of compatibility of this record with the progressive uplift implicit in the formation of conventional terrace systems are examined, with particular reference to crustal properties, which are shown to have had an important influence on landscape and drainage evolution in the region.

Type
Thematic Set: Fluvial Archives Group (FLAG) Poland
Copyright
Copyright © University of Washington. Published by Cambridge University Press, 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alasonati-Tašárová, A., Afonso, J.C., Bielik, M., Götze, H.-J., Hók, J., 2009. The lithospheric structure of the Western Carpathian–Pannonian Basin region based on the CELEBRATION 2000 seismic experiment and gravity modelling. Tectonophysics 475, 454469.Google Scholar
Aleksandrowski, P., Kryza, R., Mazur, S., Żaba, J., 1997. Kinematic data on major Variscan strike-slip faults and shear zones in the Polish Sudetes, northeast Bohemian Massif. Geological Magazine 134, 727739.Google Scholar
Aleksandrowski, P., Mazur, S., 2002. Collage tectonics in the northeasternmost part of the Variscan Belt: the Sudetes, Bohemian Massif. In: Winchester, J.A., Pharaoh, T.C., Verniers, J. (Eds.), Palaeozoic Amalgamation of Central Europe. Geological Society, London, Special Publications 201, 237277.Google Scholar
Antoine, P., Lautridou, J.P., Laurent, M., 2000. Long-term fluvial archives in NW France: response of the Seine and Somme Rivers to tectonic movements, climatic variations and sea level changes. Geomorphology 33, 183207.Google Scholar
Badura, J., Czerwonka, J.A., Krzyszkowski, D., Przybylski, B., 1998a. Geneza i wiek głębokich rynien erozyjnych na Równinie Grodkowskiej, Nizina Śląska, Polska Południowo-zachodnia [Origin and age of deep erosional structures of the Grodków Plain, Silesian Lowland, Southwestern Poland]. Biuletyn Państwowego Instytutu Geologicznego 385, 4972.Google Scholar
Badura, J., Krzyszkowki, D., Przybylski, B., 1998b. Stratygrafia glin lodowcowych, liczba zlodowaceń i kierunki transportu lodowcowego w południowej części Przedgórza Sudeckiego (okolice Ząbkowic), Polska południowo-zachodnia [Till stratigraphy, number of glaciations and local glacial palaeotransport in the southern part of the Sudetic Foreland, Ząbkowice region, southwestern Poland]. Biuletyn Państwowego Instytutu Geologicznego 385, 2948.Google Scholar
Berg, G., 1909. Die Bildung des Schlesiertales bei Charlottenbrunn. Jahrbuch der Königlich Preussischen Geologischen Landesansalt 30, 549566.Google Scholar
Bielik, M., Šefara, J., Kováč, M., Bezák, V., Plašienka, D., 2004. The Western Carpathians—interaction of Hercynian and Alpine processes. Tectonophysics 393, 6386.Google Scholar
Briant, R., Bridgland, D.R., Cordier, S., Rixhon, G., van Balen, R., 2018. FLAG at 20: Papers from the Fluvial Archives Group 20th anniversary meeting in Poland. Quaternary ResearchGoogle Scholar
Bridgland, D.R., 2000. River terrace systems in north-west Europe: an archive of environmental change, uplift and early human occupation. Quaternary Science Reviews 19, 12931303.Google Scholar
Bridgland, D.R., Demir, T., Seyrek, A., Daoud, M., Abou Romieh, M., Westaway, R., 2017. River terrace development in the NE Mediterranean region (Syria and Turkey): patterns in relation to crustal type. Quaternary Science Reviews 166, 307323.Google Scholar
Bridgland, D.R., Maddy, D., Bates, M., 2004. River terrace sequences: templates for Quaternary geochronology and marine–terrestrial correlation. Journal of Quaternary Science 19, 203218.Google Scholar
Bridgland, D.R., Westaway, R., 2008a. Climatically controlled river terrace staircases: a worldwide Quaternary phenomenon. Geomorphology 98, 285315.Google Scholar
Bridgland, D.R., Westaway, R., 2008b. Preservation patterns of Late Cenozoic fluvial deposits and their implications: results from IGCP 449. Quaternary International 189, 538.Google Scholar
Bridgland, D.R., Westaway, R., 2012. The use of fluvial archives in reconstructing landscape evolution: the value of sedimentary and morphostratigraphical evidence. Netherlands Journal of Geoscience 91, 524.Google Scholar
Bridgland, D.R., Westaway, R., 2014. Quaternary fluvial archives and landscape evolution: a global synthesis. Proceedings of the Geologists’ Association 125, 600629.Google Scholar
Bridgland, D.R., Westaway, R., Abou Romieh, M., Candy, I., Daoud, M., Demir, T., Galiatsatos, N., et al., 2012. The River Orontes in Syria and Turkey: downstream variation of fluvial archives in different crustal blocks. Geomorphology 165–166, 2549.Google Scholar
Broska, I., Petrík, I., 2015. Variscan thrusting in I- and S-type granitic rocks of the Tribeč Mountains, Western Carpathians (Slovakia): evidence from mineral compositions and monazite dating. Geologica Carpathica 66, 455471.Google Scholar
Brud, S., 2004. Palaeogeography of the western Sandomierz Basin in Late Neogene and Early Quaternary times (Carpathian Foredeep, South Poland). Annales Societatis Geologorum Poloniae 74, 6393.Google Scholar
Bujakowski, W., Barbacki, A., Miecznik, M., Pająk, L., Skrzypczak, R., 2016. A structural-thermal model of the Karkonosze Pluton (Sudetes Mountains, SW Poland) for Hot Dry Rock (HDR) geothermal use. Archives of Mining Sciences 61, 917935.Google Scholar
Čermák, V., 1979. Review of heat flow measurements in Czechoslovakia. In: Čermák, V., Rybach, L. (Eds.), Terrestrial Heat Flow in Europe. Springer, Berlin, pp. 152160.Google Scholar
Ciuk, E., Piwocki, M., 1979. Trzeciorzędu w rejonie Ząbkowic Śląskich (Dolny Śląsk). Biuletyn Instytutu Geologicznego 320, 2756.Google Scholar
Ciuk, E., Pożaryska, K., 1982. On paleogeography of the Tertiary of the Polish Lowland. Przyjaciół Muzyka. Ziemi 35, 8188.Google Scholar
Czerwonka, J.A., Dobosz, T., Krzyszkowski, D., 1997. Till stratigraphy and petrography of the northern part of Silesia, Southwestern Poland. Kwartalnik Geologiczny 41, 209242.Google Scholar
Czerwonka, J.A., Gratzke, B., Krzyszkowski, D., 1994. History of glaciation in the zone of maximum extent of the late Weichselian ice-sheet near Leszno, western Poland. Folia. Quaternaria 65, 143194.Google Scholar
Czerwonka, J.A., Krzyszkowski, D., 1992. Pleistocene stratigraphy of the central part of Silesian Lowland, southwestern Poland. Bulletin of the Polish Academy of Science, Earth Sciences 40, 203233.Google Scholar
Czerwonka, J.A., Krzyszkowski, D., 2001. Preglacial (Pliocene–Early Middle Pleistocene) deposits in Southwestern Poland: lithostratigraphy and reconstruction of drainage pattern. In: Krzyszkowski, D. (Ed.), Late Cainozoic Stratigraphy and Palaeogeography of the Sudetic Foreland. WIND Press, Wrocław, Poland, pp. 147195.Google Scholar
Don, J., Zelaźniewicz, A., 1990. The Sudetes – boundaries, subdivision and tectonic position. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen 179, 121127.Google Scholar
Dyjor, S., 1983. Problemy wieku dolnej granicy i faz ruchów neotektonicznych w południowo-zachodniej Polsce. In: Współczesne i neotektoniczne ruchy skorupy ziemskiej 4. Ossolineum, Wrocław, Poland, pp. 121132.Google Scholar
Dyjor, S., 1986. Evolution of sedimentation and palaeogeography of near-frontier areas of the Silesian part of the Paratethys and the Tertiary Polish-German Basin. Kwartalnik Akademii Górniczo-Hutniczej, Geologia 12, 723.Google Scholar
Dyjor, S., 1987a. Młodotrzeciorzędowy i eoplejstoceński rozwój sieci kopalnych dolin w Polsce na tle ewolucji paleogeograficznrj bruzdy środkowoeuropejskiej. In: Jahn, A., Dyjor, S. (Eds.), Problemy młodszego neogenu i eoplejstocenu w Polsce. Ossolineum, Wrocław, Poland, pp. 1342.Google Scholar
Dyjor, S., 1987b. Systemy kopalnych dolin Polski Zachodniej i fazy ich rozwoju w mlodszym neogenie i eoplejstocenie. In: Jahn, A., Dyjor, S. (Eds.), Problemy młodszego neogenu i eoplejstocenu w Polsce. Ossolineum, Wrocław, Poland, pp. 85101.Google Scholar
Dyjor, S., 1993. Etapy blokowego rozwoju Sudetów i ich przedpola w neogenie i starszym czwartorzędzie. Folia. Quaternaria 64, 2541.Google Scholar
Dyjor, S., Kvacek, Z., Łańcucka-Środoniowa, M., Sadowska, A., Zastawniak, E., 1992. The younger Tertiary deposits in the Gozdnica region (SW Poland) in the light of recent palaeobotanical research. Polish. Botanical Studies 3, 3129.Google Scholar
Franke, W., Żelaźniewicz, A., 2002. Structure and evolution of the Bohemian Arc. Geological Society, London, Special Publications 201, 279293.Google Scholar
Frech, F., 1915. Ein Normalprofil durch Quartär und Tertär im schlesichen Hügelland. Zentralblatt für Mineralogie, Geologie und Paläontologie, Jahrgang 1915, 417419.Google Scholar
Gibbard, P.L., 1988. The history of the great northwest European rivers during the past three million years. Philosophical Transactions of the Royal Society B: Biological Sciences 318, 559602.Google Scholar
Gordon, S.M., Schneider, D.A., Manecki, M., Holm, D.K., 2005. Exhumation and metamorphism of an ultrahigh-grade terrane: geochronometric investigations of the Sudete Mountains (Bohemia), Poland and Czech Republic. Journal of the Geological Society 162, 841855.Google Scholar
Grad, M., Guterch, A., Mazur, S., 2002. Seismic refraction evidence for crustal structure in the central part of the Trans-European Suture Zone in Poland. In: Winchester, J.A., Pharaoh, T.C., Verniers, J. (Eds.), Palaeozoic Amalgamation of Central Europe. Geological Society, London, Special Publications 201, 295309.Google Scholar
Grad, M., Guterch, A., Mazur, S., Keller, G.R., Aleš, Špičák, Hrubcová, P., Geissler, W.H., 2008. Lithospheric structure of the Bohemian Massif and adjacent Variscan belt in central Europe based on profile S01 from the SUDETES 2003 experiment. Journal of Geophysical Research 113, B10304.Google Scholar
Grad, M., Jensen, S.L., Keller, G.R., Guterch, A., Thybo, H., Janik, T., Tiira, T., et al., 2003. Crustal structure of the Trans-European suture zone region along POLONAISE’97 seismic profile P4. Journal of Geophysical Research 108, 2511.Google Scholar
Handy, M.R., Ustaszewski, K., Kissling, E., 2014. Reconstructing the Alps–Carpathians–Dinarides as a key to understanding switches in subduction polarity, slab gaps and surface motion. International Journal of Earth Sciences (Geologische Rundschau) 104, 126.Google Scholar
Hrubcová, P., Środa, P., Špičák, A., Guterch, A., Grad, M., Keller, G.R., Brueckl, E., Thybo, H., 2005. Crustal and uppermost mantle structure of the Bohemian Massif based on CELEBRATION 2000 data. Journal of Geophysical Research 110, B11035.Google Scholar
Jahn, A., 1960. Czwartorzęd Sudetów. Regionalna Geologia Polski, Kraków, Poland, pp. 358418.Google Scholar
Jahn, A., 1980. Główne i wiek rzżby Sudetów. Czasopismo Geograficzne 51, 129154.Google Scholar
Jahn, A., Łańcucka-Środoniowa, M., Sadowska, A., 1984. Stanowisko utworów plioceńskich w Kotlinie Kłodzkiej [The site of Pliocene deposits in the Kłodzko basin, central Sudetes]. Geologia Sudetica 18, 743.Google Scholar
Jentzsch, A., Berg, G., 1913. Die Geologie der Braunkohlenablagerungen im östlischen Deutschland. Abhandlungen der Jahrbuch der Preussische Geologische Landesanstalt 72, 1142.Google Scholar
Jeřábek, P., Konopásek, J., Žáčková, E., 2016. Two-stage exhumation of subducted Saxothuringian continental crust records underplating in the subduction channel and collisional forced folding (Krkonoše-Jizera Mts., Bohemian Massif). Journal of Structural Geology 89, 214229.Google Scholar
Kozarski, S., 1988. Origin of pradolinas: a discussion of mistaken ideas. Zeitschrift für Gletscherkunde und Glazialgeologie 24, 7592.Google Scholar
Kozłowski, A., Ilnicki, S., Matyszczak, W., Marcinowska, A., 2016. Magmatic and post-magmatic phenomena in the Karkonosze granite and its metamorphic envelope (West Sudetes, SW Poland). Acta Geologica Polonica 66, 451471.Google Scholar
Krajewska, K., 1996. Neogeńska flora liściowa z Gnojnej (woj. Opolskie). Maszynopis pracy doktorskiej, Instytut Botaniki PAN/UJ, Kraków, Poland.Google Scholar
Kräuzel, R., 1919. Die Pflanzen des schlesischen Tertiärs. Jahrbuch der Preussische Geologische Landesanstalt 38, 1190.Google Scholar
Kräuzel, R., 1920. Nachträge zur Tertiärflora Schlesiens, teil 1. Jahrbuch der Preussische Geologische Landesanstalt 39, 329417.Google Scholar
Krzyszkowski, D., 1995. An outline of the Pleistocene stratigraphy of the Kleszczów Graben (Bełchatów outcrop), central Poland. Quaternary Science Reviews 14, 6183.Google Scholar
Krzyszkowski, D., 1996. Glaciotectonic deformation during the Elsterian ice-sheet advance at the northeastern margin of the Sudetic Foreland, SW Poland. Boreas 25, 209226.Google Scholar
Krzyszkowski, D., Ibek, M., 1996. Middle Pleistocene sedimentation and palaeogeography of the Dzierżoniów Basin, Sudetic Foreland, Southwestern Poland. Annales Societatis Geologorum Poloniae 66, 3558.Google Scholar
Krzyszkowski, D., 1998. Preface. Geologia Sudetica 31, 259288.Google Scholar
Krzyszkowski, D., 2001. Neogene and Pleistocene stratigraphy and palaeogeography of the northern foreland of the Strzegom Hills, Sudetic Foreland, Southwestern Poland. In: Krzyszkowski, D. (Ed.), Late Cainozoic Stratigraphy and Palaeogeography of the Sudetic Foreland. WIND Press, Wrocław, Poland, pp. 2547.Google Scholar
Krzyszkowski, D., 2013. Stratygrafia Plejstocenu w Południowo-Zachodniej Polsce. In:, Plejstocen przedpola Sudetów Środkowych: XX Konferencja Stratygrafia Plejstocenu Polski, Plejstocen przedpola Sudetów Środkowych, Lasocin, 2-6.09.2013 r. Państwowy Instytut Geologiczny–Państwowy Instytut Badawczy, Warsaw, pp. 1626.Google Scholar
Krzyszkowski, D., Biernat, J., 1998. Terraces of the Bystrzyca river valley, central Sudetes Mts, and their deformation along the Sudetic Marginal Fault. Geologia Sudetica 31, 241258.Google Scholar
Krzyszkowski, D., Bowman, D., 1997. Neotectonic deformation of Pleistocene deposits along the Sudetic Marginal Fault, Southwestern Poland. Earth Surface Processes and Landforms 22, 545562.Google Scholar
Krzyszkowski, D., Karanter, M., 2001. Neogene and Pleistocene stratigraphy of the northeastern foreland of the Mount Ślęża massif, Southwestern Poland. In: Krzyszkowski, D. (Ed.), Late Cainozoic Stratigraphy and Palaeogeography of the Sudetic Foreland. WIND Press, Wrocław, Poland, pp. 91108.Google Scholar
Krzyszkowski, D., Migoń, P., Sroka, W., 1995. Neotectonic Quaternary history of the Sudetic Marginal Fault, SW Poland. Folia. Quaternaria 66, 7398.Google Scholar
Krzyszkowski, D., Przybylski, B., Badura, J., 1998. Late Cainozoic evolution of the Nysa Kłodzka river system between Kłodzko and Kamieniec Ząbkowicki, Sudetes Mts, Southwestern Poland. Geologia Sudetica 31, 133155.Google Scholar
Krzyszkowski, D., Przybylski, B., Badura, J., 2000. The role of neotectonics and glaciation on terrace formation along the Nysa Kłodzka River in the Sudeten Mountains (southwestern Poland). Geomorphology 33, 149166.Google Scholar
Krzyszkowski, D., Stachura, R., 1998. Neotectonically controlled fluvial features, Wałbrzych Upland, Middle Sudeten Mts, southwestern Poland. Geomorphology 22, 7391.Google Scholar
Krzyszkowski, D., Szuchnik, A., 1995. Pliocene-Pleistocene boundary in the Kleszczów Graben at Bełchatów, central Poland. Journal of Quaternary Science 10, 4558.Google Scholar
Krzyszkowski, D., Wachecka-Kotkowska, L., Wieczorek, D., Stoiński, A., 2015. Petrography of glacial tills in the Szczerców Outcrop Central Poland – problems of stratigraphic interpretation. Studia. Quaternaria 32, 99108.Google Scholar
Kutas, R.I., Lubimova, E.A., Smirnov, Y.B., 1979. Heat flow studies in the European part of the Soviet Union. In: Čermák, V., Rybach, L. (Eds.), Terrestrial Heat Flow in Europe. Springer-Verlag, Berlin, pp. 301308.Google Scholar
Łańcucka-Środoniowa, M., Walther, H., Zastawniak, E., 1981. A preliminary report on a new study of the Neogene flora from Soœnica near Wrocław in Lower Silesia, West Poland (leaf and fruit–seed floras). Acta Palaeobotanica 21, 101114.Google Scholar
Lewiński, J., 1928. Utwory preglacjalne i glacjalne Piotrkowa i okolic. Sprawozdanie Warszawskiego Towarzystwa Naukowego 21, 4966.Google Scholar
Lewiński, J., 1929. Die Grenzschichten zwichen Tertiär und Quartär in Mittelpolen. Zeitschrift für Geschiebeforschung 5, 8898.Google Scholar
Maddy, D., 1997. Uplift-driven valley incision and river terrace formation in southern England. Journal of Quaternary Science 12, 539545.Google Scholar
Majorowicz, J., Plewa, S., 1979. Study of heat flow in Poland with special regard to tectonophysical problems. In: Čermák, V., Rybach, L. (Eds.), Terrestrial Heat Flow in Europe. Springer-Verlag, Berlin, pp. 240252.Google Scholar
Malinowski, M., Guterch, A., Narkiewicz, M., Probulski, J., Maksym, A., Majdański, M., Środa, P., et al., 2013. Deep seismic reflection profile in Central Europe reveals complex pattern of Paleozoic and Alpine accretion at the East European Craton margin. Geophysical Research Letters 40, 38413846.Google Scholar
Marks, L., 2004. Middle and Late Pleistocene fluvial systems in central Poland. Proceedings of the Geologists’ Association 115, 18.Google Scholar
Marks, L., Ber, A., Gogołek, W., Piotrowska, K., 2006. Mapa Geologiczna Polski w skali 1:500 000 (Geological Map of Poland, 1:500, 000 scale). Warszawa: Państwowy Instytut Geologiczny (Polish Geological Institute).Google Scholar
Marks, L., 2011. Quaternary glaciations in Poland. Developments in Quaternary Science 15, 299303.Google Scholar
Maslin, M.A., Ridgwell, A.J., 2005. Mid-Pleistocene Revolution and the ‘eccentricity myth. Geological Society, London, Special Publications 247, 1934.Google Scholar
Matoshko, A., Gozhik, P., Danukalova, G., 2004. Key Late Cenozoic fluvial archives of eastern Europe: the Dniester, Dnieper, Don and Volga. Proceedings of the Geologists’ Association 115, 141173.Google Scholar
Matoshko, A.V., Gozhik, P.F., Ivchenko, A.S., 2002. The fluvial archive of the Middle and Lower Dnieper. Netherlands Journal of Geosciences 81, 339355.Google Scholar
Mazur, S., Aleksandrowski, P., Kryza, R., Oberc-Dziedzic, T., 2006. The Variscan Orogen in Poland. Geological Quarterly 50, 89118.Google Scholar
Mazur, S., Mikolajczak, M., Krzywiec, P., Malinowski, M., Buffenmyer, V., Lewandowski, M., 2015. Is the Teisseyre-Tornquist Zone an ancient plate boundary of Baltica? Tectonics 34, 24652477.Google Scholar
Michniewicz, M., 1998. The pre-Elsterian valley system in the Western Sudetes, southwestern Poland, and its later transformation. Geologia Sudetica 31, 317328.Google Scholar
Migoń, P., 1997. Tertiary etchsurfaces in the Sudetes Mountains, SW Poland: a contribution to the pre-Quaternary morphology of Central Europe. Geological Society, London, Special Publications 120, 187202.Google Scholar
Migoń, P., 1999. The role of ’preglacial’ relief in the development of mountain glaciation in the Sudetes, with the special reference to the Karkonosze Mountains. Zeitschrift für Geomophologie NF 113, 3344.Google Scholar
Migoń, P., Krzyszkowski, D., Gogół, K., 1998. Geomorphic evolution of the mountain front of the Sudetes between Dobromierz and Paszowice and adjacent areas, with particular reference to fluvial system. Geologia Sudetica 31, 289305.Google Scholar
Mojski, J.E., 1982. Outline of the Pleistocene Stratigraphy in Poland. Biuletyn Instytutu Geologicznego 343, 930.Google Scholar
Novakova, L., 2015. Tectonic phase separation applied to the Sudetic Marginal Fault Zone (NE part of the Czech Republic). Journal of Mountain Science 12, 251267.Google Scholar
Oberc, J., 1977. The Late Alpine Epoch in South-west Poland. In: Pozaryski, W. (Ed.), Geology of Poland. Vol., 4. Tectonics. Wydawnictwa Geologiczne, Warsaw, pp. 451475.Google Scholar
Olszak, J., 2011. Evolution of fluvial terraces in response to climate change and tectonic uplift during the Pleistocene: evidence from Kamienica and Ochotnica River valleys (Polish Outer Carpathians). Geomorphology 129, 7178.Google Scholar
Oszczypko, N., 1997. The Early-Middle Miocene Carpathian peripheral foreland basin (Western Carpathians, Poland). Przegląd Geologiczny 45, 10541063.Google Scholar
Peryt, T.M., Piwocki, M., 2004. Budowa Geologiczna Polski. Tom 1, Stratygrafia, część 3a: Kenozoik, Paleogen, Neogen. Państwowy Instytut Geologiczny, Warsaw.Google Scholar
Pharaoh, T.C., England, R.W., Verniers, J.C.L., Zelazniewicz, A., 1997. Introduction: geological and geophysical studies in the Trans-European Suture Zone. Geological Magazine 134, 585590.Google Scholar
Plašienka, D., Grecula, P., Putiš, M., Kováč, M., Hovorka, D., 1997. Evolution and structure of the Western Carpathians: an overview. In: Grecula, P., Hovorka, D., Putiš, M. (Eds.), Geological Evolution of the Western Carpathians. Mineralia Slovaca, Monograph. Mineralia Slovaca, Bratislava, Slovakia, pp. 124.Google Scholar
Pliszczyńska, K., 2012. Tarasy Białki w rejonie Jurgowa i ich związki z lodowcami tatrzańskimi [Terraces of the Białka River at Jurgów (Podhale, Poland) and their connections with the glaciers of the Tatra Mts]. Przegląd Geologiczny 60, 103109.Google Scholar
Przybylski, B., Badura, J., Czerwonka, J.A., Krzyszkowski, D., Krajewska, K., Kuszell, T., 1998. Preglacial Nysa Kłodzka fluvial system in the Sudetic Foreland, Southwestern Poland. Geologia Sudetica 31, 171196.Google Scholar
Sadowska, A., 1985. Wiek osadów serii Gozdnicy z Gnojnej w świetle badań palinologicznych. In: Plioceńska i eoplejstoceńska sieć rzeczna i związane z nią kompleksy osadów gruboklastycznych w Polsce, przewodnik konferencji terenowej, Wrocław, pp. 9295.Google Scholar
Sadowska, A., 1992. Problem of the Miocene/Pliocene boundary as arising from palynostratigraphic studies from Gnojna (South-western Poland). In: Kover-Eder, J. (Ed.), Palaeovegetational Development in Europe and Regions Relevant to Its Palaeofloristic Evolution: Proceedings of the Pan-European Palaeobotanical Conference, Museum of Natural History, Vienna, pp. 211217.Google Scholar
Sadowska, A., 1995. A palynological correlation between Neogene deposits from south-western Poland and the Netherlands. Mededelingen Rijks Geologische Dienst 52, 3542.Google Scholar
Salamon, T., 1998. Origin of Pleistocene outwash plains in various topographic settings, southern Poland. Boreas 38, 362378.Google Scholar
Salamon, T., Krzyszkowski, D., Kowalska, A., 2013. Development of Pleistocene glaciomarginal lake in the foreland of the Sudetes (SW Poland). Geomorphology 190, 115.Google Scholar
Schmid, S.M., Fügenschuh, B., Kissling, E., Schuster, R., 2004. Tectonic map and overall architecture of the Alpine orogen. Eclogae Geologicae Helvetiae 97, 93117.Google Scholar
Schwarzbach, M., 1955. Geologische forschung in Schlesien. Verlagsrchiv Nr. 691. Verlag-gesellschaft Rudolf Müller. Köln-Braunsfeld, Germany.Google Scholar
Stachurska, A., Sadowska, A., Dyjor, S., 1973. The Neogene flora at Soœnica near Wrocław in the light of geological and palynological investigations. Acta Palaeobotanica 14, 147176.Google Scholar
Stampfli, G.M., Mosar, J., Favre, P., Pillevuit, A., Vannay, J.-C., 2001. Permo-Mesozoic evolution of the western Tethys realm: the Neo-Tethys East Mediterranean Basin connection. In: Ziegler, P.A., Cavazza, W., Robertson, A.H.F., Crasquin-Soleau, S. (Eds.), Peri-Tethys Memoir 6: Peri-Tethyan Rift/Wrench Basins and Passive Margins. Mémoires du Museum National d’Histoire Naturelle, Paris 186, 51108.Google Scholar
Stampfli, G.M., Von Raumer, J.F., Borel, G.D., 2002. Paleozoic evolution of pre-Variscan terranes: from Gondwana to the Variscan collision. In: Martínez Catalán, J.R., Hatcher, R.D., Jr., Arenas, R., Díaz García, F. (Eds.), Variscan-Appalachian Dynamics: The Building of the Late Paleozoic Basement. Geological Society of America, Special Papers 364, 263280.Google Scholar
Stange, K.M., van Balen, R., Vandenberghe, J., Peña, L.L., Sancho, C., 2013. External controls on Quaternary fluvial incision and terrace formation at the Segre River, Southern Pyrenees. Tectonophysics 602, 316331.Google Scholar
Stark, P., Overbeck, F., 1932. Eine Diluviale Flora von Jonsbach bei Wartha (Schlesien). Planta 17, 437452.Google Scholar
Starkel, L., 2003. Climatically controlled terraces in uplifting mountains areas. Quaternary Science Reviews 22, 21892198.Google Scholar
Starkel, L., 2014. O niektórych prawidłowościach rozwoju rzeźby gór i ich przedpoli. Wydawnictwo Akademickie Sedno, Instytut Geografii i Przestrzennego Zagospodarowania PAN, Warsaw.Google Scholar
Štěpančíková, P., Stemberk, J., Vilímek, V., Košťák, B., 2008. Neotectonic development of drainage networks in the East Sudeten Mountains and monitoring of recent fault displacements (Czech Republic). Geomorphology 102, 6880.Google Scholar
Szafián, P., Horváth, F., Cloetingh, S., 1997. Gravity constraints on the crustal structure and slab evolution along a Transcarpathian transect. Tectonophysics 272, 233247.Google Scholar
Szewczyk, J., Gientka, D., 2009. Mapa gęstości ziemskiego strumienia cieplnego Polski [Terrestrial heat flow density map of Poland]. Państwowy Instytut Geologiczny, Warsaw.Google Scholar
Teisseyre, R., Teisseyre, B., 2002. Wawrzyniec Karol de Teisseyre: a pioneer of the study of “cryptotectonics. Eos, Transactions American Geophysical Union 83, 541546.Google Scholar
Teisseyre, W., 1893. Całokształt płyty paleozoicznej Podola Galicyjskiego. Kosmos 18, 1936.Google Scholar
Traczyk, A., 2009. Zlodowacenie Śnieżnych Kotłów w Karkonoszach Zachodnich w świetle analizy morfometrycznej oraz GIS [Glaciation of the Śnieżne Kotły in the Western Karkonosze Mts in the light of morphometric analysis and GIS]. Opera Corcontica 46, 4156.Google Scholar
Turner, C., 1996. A brief survey of the early Middle Pleistocene in Europe. In: Turner, C. (Ed.), The Early Middle Pleistocene in Europe. Balkema, Rotterdam, the Netherlands, pp. 295317.Google Scholar
Tyráček, J., Westaway, R., Bridgland, D., 2004. River terraces of the Vltava and Labe (Elbe) system, Czech Republic, and their implications for the uplift history of the Bohemian Massif. Proceedings of the Geologists’ Association. 115, 101124.Google Scholar
Vandenberghe, J., 2002. The relation between climate and river processes, landforms and deposits during the Quaternary. Quaternary International 91, 1723.Google Scholar
Von Raumer, J.F., Stampfli, G.M., Borel, G., Bussy, F., 2002. The organization of pre-Variscan basement areas at the north-Gondwanan margin. International Journal of Earth Sciences 91, 3552.Google Scholar
Von Raumer, J.F., Stampfli, G.M., Bussy, B., 2003. Gondwana-derived microcontinents? The constituents of the Variscan and Alpine collisional orogens. Tectonophysics 365, 722.Google Scholar
Westaway, R., 2001. Flow in the lower continental crust as a mechanism for the Quaternary uplift of the Rhenish Massif, northwest. Europe. In: Maddy, D., Macklin, M., Woodward, J. (Eds.), River Basin Sediment Systems: Archives of Environmental Change. Balkema, Abingdon, UK, pp. 87167.Google Scholar
Westaway, R., 2002a. Geomorphological consequences of weak lower continental crust, and its significance for studies of uplift, landscape evolution, and the interpretation of river terrace sequences. Netherlands Journal of Geosciences 81, 283304.Google Scholar
Westaway, R., 2002b. The Quaternary evolution of the Gulf of Corinth, central Greece: coupling between surface processes and flow in the lower continental crust. Tectonophysics 348, 269318.Google Scholar
Westaway, R., Bridgland, D.R., 2014. Relation between alternations of uplift and subsidence revealed by Late Cenozoic fluvial sequences and physical properties of the continental crust. Boreas 43, 505527.Google Scholar
Westaway, R., Bridgland, D., Mishra, S., 2003. Rheological differences between Archaean and younger crust can determine rates of Quaternary vertical motions revealed by fluvial geomorphology. Terra Nova 15, 287298.Google Scholar
Westaway, R., Bridgland, D.R., Sinha, R., Demir, T., 2009. Fluvial sequences as evidence for landscape and climatic evolution in the Late Cenozoic: a synthesis of data from IGCP 518. Global and Planetary Change 68, 237253.Google Scholar
Westaway, R., Bridgland, D.R., White, M.J., 2006. The Quaternary uplift history of central southern England: evidence from the terraces of the Solent River system and nearby raised beaches. Quaternary Science Reviews 25, 22122250.Google Scholar
Westaway, R., Maddy, D., Bridgland, D., 2002. Flow in the lower continental crust as a mechanism for the Quaternary uplift of south-east England: constraints from the Thames terrace record. Quaternary Science Reviews 21, 559603.Google Scholar
Westaway, R., 2010. Cenozoic uplift of southwest England. Journal of Quaternary Science 25, 419432.Google Scholar
Wieczorek, D., Stoiński, A., Krzyszkowski, D., Wachecka-Kotkowska, L., Krzymińska, J., 2015. The results of new studies of Quaternary sediments in the Kleszczów Graben, Szczerców Outcrop, Bełchatów Lignite Opencast Mine. Landform. Analysis 29, 6371.Google Scholar
Zarski, M., 1996. Szczegolowa mapa geologiczna Polski w skali 1:50 000, arkusz Kozienice (673). [Geological map, 1:50 000 scale.]. Wydawnictwo PAE, Warsaw.Google Scholar
Zeuner, F., 1928. Diluvialstatigraphie und Diluvialtektonik im Gebiet der Glatzer Neise. Universitätsverlag von Robert Noske, Borna-Leipzig, Germany.Google Scholar
Zeuner, F., 1929. Eine altdiluviale Flora von Jonsbach bei Wartha. Zentralblatt für Mineralogie, Geologie und Paläontologie, Jahrgang 1929, 179181.Google Scholar
Zeuner, F.E., 1945. The Pleistocene Period: its Climate. Chronology and Faunal Successions, 1st. edition. Publication no. 130. Ray Society, London, 322 pp.Google Scholar
Zeuner, F.E., 1946. Dating the Past: an Introduction to geochronology, 1st edition. Methuen, London, 444 pp.Google Scholar
Zeuner, F.E., 1958. Dating the Past: an Introduction to geochronology. 4th edition. Methuen, London, 515 pp.Google Scholar
Zeuner, F.E., 1959. The Pleistocene Period: Its Climate, Chronology and Faunal Succession (2nd Edition). Hutchinson, London, 447 pp.Google Scholar
Zuchiewicz, W., 1992. Pozycja stratygraficzna tarasów Dunajca w Karpatach Zachodnich. Przegląd Geologiczny 40, 436445.Google Scholar
Zuchiewicz, W., 1998. Quaternary tectonics of the Outer West Carpathians, Poland. Tectonophysics 297, 121132.Google Scholar
Zuchiewicz, W., 2011. Pleistocene tectonic activity of the Polish Western Carpathians: insights. from fluvial terraces. Acta Geodynamica et Geomaterialia 8, 97224.Google Scholar
Supplementary material: PDF

Krzyszkowski et al. supplementary material

Figures S1-S8 and Table S1

Download Krzyszkowski et al. supplementary material(PDF)
PDF 3.4 MB