Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2025-01-05T17:20:35.394Z Has data issue: false hasContentIssue false

The diversity and biogeography of late Pleistocene birds from the lowland Neotropics

Published online by Cambridge University Press:  20 January 2017

David W. Steadman*
Affiliation:
Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA
Jessica A. Oswald
Affiliation:
Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA Museum of Natural Science, 119 Foster Hall, Louisiana State University, Baton Rouge, LA 70803, USA
Ascanio D. Rincόn
Affiliation:
Laboratorio de Paleontología, Centro de Ecología, Instituto Venezolano de Investigaciones Científicas, Caracas 1020-A, Venezuela
*
*Corresponding author. E-mail address:[email protected] (D.W. Steadman).

Abstract

The Neotropical lowlands sustain the world's richest bird communities, yet little that we know about their history is based on paleontology. Fossils afford a way to investigate distributional shifts in individual species, and thus improve our understanding of long-term change in Neotropical bird communities. We report a species-rich avian fossil sample from a late Pleistocene tar seep (Mene de Inciarte) in northwestern Venezuela. A mere 175 identified fossils from Mene de Inciarte represent 73 species of birds, among which six are extinct, and eight others no longer occur within 100 km. These 14 species consist mainly of ducks (Anatidae), snipe (Scolopacidae), vultures/condors (Vulturidae), hawks/eagles (Accipitridae), and blackbirds (Icteridae). Neotropical bird communities were richer in the late Pleistocene than today; their considerable extinction may be related to collapse of the large mammal fauna at that time. The species assemblage at Mene de Inciarte suggests that biogeographic patterns, even at continental scales, have been remarkably labile over short geological time frames. Mene de Inciarte is but one of 300 + tar seeps in Venezuela, only two of which have been explored for fossils. We may be on the cusp of an exciting new era of avian paleontology in the Neotropics.

Type
Original Articles
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alvarenga, H.M.F., Olson, S.L. (2004). A new genus of tiny condor from the Pleistocene of Brazil (Aves: Vulturidae). Proceedings of the Biological Society of Washington 117, 19.Google Scholar
Bradbury, J.P. (1981). Late Quaternary environmental history of Lake Valencia, Venezuela. Science 214, 12991305.Google Scholar
Brumfield, R. (2012). Inferring origins of lowland neotropical birds. Auk 209, 367376.Google Scholar
Campbell, K.E. (1976). The Late Pleistocene avifauna of La Carolina, southwestern Ecuador. Smithsonian Contributions to Paleobiology 27, 155168.CrossRefGoogle Scholar
Campbell, K.E. (1979). The non-passerine Pleistocene avifauna of the Talara tar seeps, northwestern Peru. Life Science Contributions, Royal Ontario Museum 118, 1203.Google Scholar
Chiang, J.C.H., Biasutti, M., Battisti, D.S. (2003). Sensitivity of the Atlantic Intertropical Convergence Zone to Last Glacial Maximum boundary conditions. Paleoceanography 18, 1094 10.1029/2003PA000916.Google Scholar
Coltrain, J.B. (2004). Rancho La Brea stable isotope biogeochemistry and its implications for the palaeoecology of late Pleistocene, coastal southern California. Palaeogeography, Palaeoclimatology, Palaeoecology 205, 199219.CrossRefGoogle Scholar
Curtis, J.H. (1999). Climate change in the Lake Valencia Basin, Venezuela, ~ 12,600 yr BP to present. The Holocene 9, 609619.Google Scholar
Czaplewski, N.J. (2005). Fossil bat (Mammalia: Chiroptera) remains from Inciarte Tar Pit, Sierra de Perija, Venezuela. Caribbean Journal of Science 41, 768781.Google Scholar
Eisenberg, J.F. (1989). Mammals of the Neotropics. vol. 1, University of Chicago Press, .Google Scholar
Emslie, S.D. (1998). Avian community, climate, and sea-level changes in the Plio-Pleistocene of the Florida Peninsula. Ornitholgical Monographs 50, 1113.Google Scholar
Fajardo, L. (2005). Tropical dry forests of Venezuela: characterization and current conservation status. Biotropica 37, 531546.Google Scholar
Friedmann, H. (1929). The Cowbirds: A Study in the Biology of Social Parasitism. C. Thomas, Springfield, Illinois.Google Scholar
Friscia, A.R., Van Valkenburgh, B., Spencer, L., Harris, J. (2008). Chronology and spatial distribution of large mammal bones in pit 91, Rancho La Brea. Palaios 23, 3542.Google Scholar
Heck, K.L., van Belle, G., Simberloff, D. (1975). Explicit calculation of the rarefaction diversity measurement and the determination of sufficient sample size. Ecology 56, 14591461.Google Scholar
Hilty, S.L. (2003). Birds of Venezuela. 2nd ed.Princeton University Press, Princeton, NJ.Google Scholar
Hurlbert, S.H. (1971). The nonconcept of species diversity: a critique and alternative parameters. Ecology 52, 577586.Google Scholar
Jull, A.J.T. (2004). Radiocarbon dating of extinct fauna in the Americas recovered from tar pits. Nuclear Instruments and Methods in Physics Research B 223–224, 668671.Google Scholar
Kanner, L.C. (2012). High latitude forcing of the South American summer monsoon during the Last Glacial. Science 335, 570573.Google Scholar
Kienast, M. (2006). Eastern Pacific cooling and Atlantic overturning circulation during the last deglaciation. Nature 443, 846848.Google Scholar
Lanyon, W.E. (1995). Eastern meadowlark (Sturnella magna). Poole, A., Gill, F. The Birds of North, America 160, 124.Google Scholar
Laws, R.M. (1970). Elephants as agents of habitat and landscapes change in East Africa. Oikos 21, 115.Google Scholar
Lorenzen, E.D. (2011). Species-specific responses of Late Quaternary megafauna to climate and humans. Nature 479, 359365.Google Scholar
Lundelius, E.L. (1983). Terrestrial vertebrate faunas. Wright, H.E. jr. Late-Quaternary environments of the United States University of Minnesota Press, Minneapolis.311353.Google Scholar
Martin, S.G. (2002). Brewer's blackbird (Euphagus cyanocephalus). Poole, A., Gill, F. The Birds of North, America 616, 132.Google Scholar
Mayr, E. (1942). Systematics and the origin of species. Columbia University Press, New York.Google Scholar
Miller, A.H. (1929). The passerine remains from Rancho La Brea in the paleontological collections of the University of California. University of California Publications, Bulletin of the Department of Geological Sciences 19, 1422.Google Scholar
Oksanen, J., Blanchet, F.G., Kindt, R., Legendre, P., Minchin, P.R., O'Hara, R.B., Simpson, G.L., Solymos, P., Stevens, M.H.H., Wagner, H. (2013). Vegan: community ecology package. r package version 2.0-10. http://CRAN.R-project.org/package=vegan.Google Scholar
Olson, S.L. (2007). The “walking eagle” Wetmoregyps daggetti Miller-a scaled-up version of the savanna hawk Buteogallus meridionalis . Ornithological Monographs 63, 110114.Google Scholar
Oswald, J.A., Steadman, D.W. (2011). Late Pleistocene passerine birds from Sonora, Mexico. Palaeogeography, Palaeoclimatology, Palaeoecology 301, 5663.Google Scholar
Peterson, L.C., Haug, G.H., Hughen, K.A., Röhl, U. (2000). Rapid changes in the hydrologic cycle of the tropical Altlantic during the last glacial. Science 290, 19471951.Google Scholar
Prevosti, F.J., Rincón, A.D. (2007). A new fossil canid assemblage from the late Pleistocene of northern South America: the canids of the Inciarte asphalt pit (Zulia, Venezuela), fossil record and biogeography. Journal of Paleontology 81, 10531065.Google Scholar
Quental, B., Marshall, C.R. (2010). Diversity dynamics: molecular phylogenies need the fossil record. Trends in Ecology and Evolution 25, 434441.CrossRefGoogle ScholarPubMed
Rincón, A.D. (2011a). New saber-toothed cat records (Felidae: Machairodontinae) for the Pleistocene of Venezuela, and the great American Biotic Interchange. Journal of Vertebrate Paleontology 31, 468478.Google Scholar
Rincón, A.D. (2011b). New remains of Mixotoxodon larensis Van Frank 1957 (Mammalia: Notoungulata) from Mene de Inciarte Tar Pit, north-western Venezuela. Interciencia 36, 894899.Google Scholar
Rincón, A.D., Alberdi, M.T., Prado, J.L. (2006). Nuevo registro de Equus (Amerihippus) santaeelenae (Mammalia, Perissodactyla) del pozo de asfalto de Inciarte (Pleistoceno Superior), estado Zulia, Venezuela. Ameghiniana 43, 529538.Google Scholar
Rincón, A.D., White, R.S., McDonald, H.G. (2008). Late Pleistocene cingulates (Mammalia: Xenarthra) from Mene de inciarte tar pits, Sierra de Perija, western Venezuela. Journal of Vertebrate Paleontology 28, 197207.Google Scholar
Rull, V. (2011). Neotropical biodiversity: timing and potential drivers. Trends in Ecology and Evolution 26, 1015.CrossRefGoogle ScholarPubMed
Semken jr., H.A., Graham, R.W., Stafford jr., T.W. (2010). AMS C14 analysis of Late Pleistocene non-analog faunal components from 21 cave deposits in southeastern North America. Quaternary International 217, 240255.Google Scholar
Steadman, D.W., Martin, P.S. (1984). Extinction of birds in the late Pleistocene of North America. Martin, P.S., Klein, R.G. Quaternary Extinctions University of Arizona Press, Tucson.466477.Google Scholar
Steadman, D.W., Mead, J.I. (2010). A late Pleistocene bird community at the northern edge of the tropics in Sonora, Mexico. American Midland Naturalist 163, 423441.CrossRefGoogle Scholar
Stock, C. (1956). Rancho La Brea — a record of Pleistocene life in California. Los Angeles County Museum, Science Series 20, .Google Scholar
Stotz, D. (1996). Neotropical Birds: Ecology and Conservation. University of Chicago Press, .Google Scholar
Taylor, R.C. (2010). Birds of Southeastern Arizona. R. W. Morse Company, Olympia, WA.Google Scholar
Terborgh, J., Estes, J.A. (2010). Trophic Cascades: Predators, Prey, and the Changing Dynamics of Nature. Island Press, Washington, D.C..Google Scholar
Turchetto-Zolet, A.C. (2012). Phylogeographical patterns shed light on evolutionary process in South America. Molecular Ecology 22, 11931213.Google Scholar
Warren, R., VanDerWal, J., Price, J., Wellbergen, J.A., Atkinson, I. (2013). Quantifying the benefit of early climate change mitigation in avoiding biodiversity loss. Nature Climate Change 3, 678682.CrossRefGoogle Scholar