Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-28T01:06:03.124Z Has data issue: false hasContentIssue false

Discovery of the skull of Stephanorhinus kirchbergensis (Jäger, 1839) above the Arctic Circle

Published online by Cambridge University Press:  30 August 2017

Irina V. Kirillova
Affiliation:
National Alliance of Shidlovskiy “Ice Age,” Ice Age Museum, Bldg. 119, Mira pr., Moscow 129223, Russia
Olga F. Chernova
Affiliation:
A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Bldg. 33, Leninskiy pr., Moscow 119071, Russia
Jan van der Made
Affiliation:
Consejo Superior de Investigaciones Científicas, Museo Nacional de Ciencias Naturales, c. José Gutiérrez Abascal 2, 28006 Madrid, Spain
Vladimir V. Kukarskih
Affiliation:
Institute of Plant and Animal Ecology, Ural Branch, Russian Academy of Sciences, Bldg. 202, ul. 8-go Marta, Yekaterinburg 620144, Russia
Beth Shapiro
Affiliation:
Department of Ecology and Evolutionary Biology, University of California Santa Cruz, 1156 High Street, Santa Cruz, California 95064, USA UCSC Genomics Institute, University of California Santa Cruz, 1156 High Street, Santa Cruz, California 95064, USA
Johannes van der Plicht
Affiliation:
Center for Isotope Research, Groningen University, Nijenborgh 6, 9747 AG Groningen, the Netherlands Faculty of Archaeology, Leiden University, Einsteinweg 2, 2333 CC Leiden, the Netherlands
Fedor K. Shidlovskiy
Affiliation:
National Alliance of Shidlovskiy “Ice Age,” Ice Age Museum, Bldg. 119, Mira pr., Moscow 129223, Russia
Peter D. Heintzman
Affiliation:
Department of Ecology and Evolutionary Biology, University of California Santa Cruz, 1156 High Street, Santa Cruz, California 95064, USA
Thijs van Kolfschoten
Affiliation:
Faculty of Archaeology, Leiden University, Einsteinweg 2, 2333 CC Leiden, the Netherlands
Oksana G. Zanina*
Affiliation:
Institute of Physicochemical and Biological Problems of Soil Science, Russian Academy of Sciences, Bldg. 2, ul. Institutskaya, Pushchino, Moscow region 142290, Russia
*
*Corresponding author at: Institute of Physicochemical and Biological Problems of Soil Science, Russian Academy of Sciences, Bldg. 2, ul. Institutskaya, Pushchino, Moscow region 142290, Russia. E-mail address: [email protected] (O.G. Zanina).

Abstract

The skull of the extinct rhinoceros Stephanorhinus kirchbergensis (Jäger, 1839) was discovered in the Chondon River valley (Arctic Yakutia, Russia) during the summer of 2014. This is the first find of Stephanorhinus above the Arctic Circle, expanding significantly the known geographic range of the genus. 14C dating and geologic evidence indicate that the skull dates to between 48,000 and 70,000 yr, corresponding to Marine Oxygen Isotope Stage 4/3. It is thus among the latest records of this species. To explore the evolutionary and natural history of this relatively unknown animal, we performed morphological, dietary, and genetic analyses. Phylogenetic inference based on a complete mitochondrial genome sequence confirms the systematic placement of Stephanorhinus as most closely related to the extinct woolly rhinoceros, Coelodonta. Food remains in the fossas of the cheek teeth, identified as Larix, Vaccinium, Betula sp., Aulacomnium, and dicotyledonous herbs and grasses, suggest a mixed feeder’s diet. Microwear analysis suggests that, during the last months of its life, this individual fed predominantly on leaves and twigs. The habitat of Stephanorhinus comprised grassland and open woodland that were characterized by moist and cold climate conditions, similar to those in the region today.

Type
Research Article
Copyright
Copyright © University of Washington. Published by Cambridge University Press, 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aerts-Bijma, A.T., van der Plicht, J., Meijer, H.A.J., 2001. Automatic AMS sample combustion and CO2 collection. Radiocarbon 43, 293298.CrossRefGoogle Scholar
Alekseeva, E.V., 1980. Mlekopitayushchie Pleystozena Yugo-Vostoka Zapadnoy Sibiri (Khishchnye, Khobotnye, Kopytnye) [Pleistocene mammals from south-east of western Siberia]. Akademya Nauk SSSR, Dal’nevostochny Nauchny Zentr Biologii (Pochva Institut), Nauka, Moscow.Google Scholar
Ambrose, S.H., 1990. Preparation and characterization of bone ad tooth collagen for isotopic analysis. Journal of Archaeological Science 17, 431451.Google Scholar
Andreev, V.N., 1934. Kormovaya baza Yamal’skogo olenevodstva [Forage basis of Yamal peninsula reindeer husbandry]. Sovetskoe Olenevodstvo 1, 99164.Google Scholar
Asperen, E.N., van, Kahlke, R.-D., 2015. Dietary variation and overlap in central and northwest European Stephanorhinus kirchbergensis and S. hemitoechus (Rhinocerotidae, Mammalia) influenced by habitat diversity. Quaternary Science Reviews 107, 4761.Google Scholar
Baranova, J.P., Biske, S.F., 1964. Northeast of the USSR. History of the Development of the Relief of Siberia and the Far East [In Russian.] Nauka, Moscow.Google Scholar
Belyaeva, E.I., 1935. Nekotorye dannye o chetvertichnykh mlekopitayushchikh iz Nizhnevolzhskogo kraya po materialam muzeya g. Pugachov. Zemlya [Some data on the Quaternary mammals from the area of the Lower Volga based on the material in the Pugachov Region Municipal Museum]. Trudy Komissii po Izuchenyu Chetvertichnogo Perioda 4, 303308.Google Scholar
Belyaeva, E.I., 1939). Ob ostatkakh iskopaemogo nosoroga iz okrestnostey g. Rybinska [On fossil rhinoceros remains from the environs of Rybinsk]. In: Belyaeva, E.I. (Ed.), Voprosy Stratigrafii Chetvertichnykh Otlozhenii i ee Paleontologicheskoe Obosnovanie. Bjulleten’ Komissii po Izucheniyu Chetvertichnogo Perioda 5, 69–90.Google Scholar
Beljaeva, E.I., David, A.I., 1975. Die Nashörner (Rhinocerotidae) aus dem Faunenkomplex von Tiraspol. Quartärpaläontologie 1, 157175.Google Scholar
Benkova, V.E., Schweingruber, F.H., 2004. Anatomy of Russian Woods. An Atlas for the Identification of Trees, Shrubs, Dwarf Shrubs, and Woody Lianas from Russia. Haupt, Bern, Switzerland.Google Scholar
Billia, E.M.E., 2007. First records of Stephanorhinus kirchbergensis (Jäger, 1839) (Mammalia, Rhinocerotidae) from the Kuznetsk Basin (Kemerovo, Kuzbass area, southeast of western Siberia). Bollettino della Paleontologica Italiana 46, 95100.Google Scholar
Billia, E.M.E., 2008. The skull of Stephanorhinus kirchbergensis (Jäger 1839) (Mammalia, Rhinocerotidae) from the Irkutsk region (southwest eastern Siberia). Quaternary International 179, 2024.Google Scholar
Billia, E.M.E., 2010. The famous Stephanorhinus kirchbergensis (Jäger 1839) “Irkutsk skull” (Mammalia, Rhinocerotidae) from eastern Siberia briefly compared with those from Krapina and Warsaw (eastern Europe). Muzeul Olteniei Craiova. Oltenia. Studii şi comunicări. Ştiinţele Naturii 26, 296302.Google Scholar
Billia, E.M.E., 2014. Stephanorhinus kirchbergensis (Mammalia, Rhinocerotidae) from European Russia: a new, detailed inventory of sires and referred material. Central European Geology 57, 165195.Google Scholar
Billia, E.M.E., Zervanová, J., 2015. New Stephanorhinus kirchbergensis (Mammalia, Rhinocerotidae) records in Eurasia. Addenda to a previous work. Gortania. Geologia, Paleontologia, Paletnologia 36, 5568.Google Scholar
Boeskorov, G.G., 2012. Some morphological and ecological features of the fossil woolly rhinoceros Coelodonta antiquitatis (Blumenbach 1799). [In Russian.], Zoologicheskii Zhurnal 91, 219235.Google Scholar
Brandt, I.F., von, 1849. Die Rhinocerotis antiquitatis Seu tichorhini, Sell Pallasii structura externa et Osteologica observationes a religuiis, quae in museis Petropolitanis servantu erutae. Mémoires de l’Académie impériale des sciences de St.-Pétersbourg, 6 série, sciences mathématiques, physiques et naturelles. Seconde partie: sciences naturelles 5, pp. 161416.Google Scholar
Brandt, J.F., von, 1877. Versuch einer Monographie der Tichorhinen Nashörner nebst Bemerkungen über Rhinoceros leptorhinus Cuvier. Mémoires de l’Académie impériale des sciences de St.-Pétersbourg, 7 série 24, 1135.Google Scholar
Briggs, A.W., Good, J.M., Green, R.E., Krause, J., Maricic, T., Stenzel, U., Lalueza-Fox, C., et al 2009. Targeted retrieval and analysis of five Neandertal mtDNA genomes. Science 325, 318321.Google Scholar
Cerdeño, E., 1990. Stephanorhinus hemitoechus (Falc.) (Rhinocerotidae, Mammalia) del Pleistoceno medio y superior de España. Estudios geológicos 6, 465479.Google Scholar
Cerdeño, E., 1995. Cladistic analysis of the family Rhinocerotidae (Perissodactyla). American Museum Novitates 3143, 125.Google Scholar
Chersky, I.D., 1891. Opisanie cherepa nosoroga, razlichnago ot Rhinoceros tichorhinus [Description of a rhinoceros skull different from Rhinoceros tichorhinus]. Zapiski Imperatorskoy Akademii Nauk 25, 6575.Google Scholar
Dabney, J., Knapp, M., Glocke, I., Gansauge, M.-T., Weihmann, A., Nickel, B., Valdiosera, C., et al. 2013. Complete mitochondrial genome sequence of a middle Pleistocene cave bear reconstructed from ultrashort DNA fragments. Proceedings of the National Academy of Sciences of the United States of America 110, 1575815763.Google Scholar
Danukalova, G., Yakovlev, A., Alimbekova, L., Yakovleva, T., Morozova, E., Eremeev, A., Kosintsev, P., 2008. Biostratigraphy of the Upper Pleistocene (Upper Neopleistocene)—Holocene deposits of the Lemeza River valley of the southern Urals region (Russia). Quaternary International 190, 3857.Google Scholar
Darriba, D., Taboada, G.L., Doallo, R., Posada, D., 2012. jModelTest 2: more models, new heuristics and parallel computing. Nature Methods 9, 772.Google Scholar
DeNiro, M.J., 1985. Postmortem preservation and alteration of in vivo bone collagen isotope ratios in relation to paleodietary reconstruction. Nature 317, 806809.CrossRefGoogle Scholar
Dubrovo, I.A., 1957. Ob ostatkakh Parelephas wüsti (M. Pavl.) i Rhinoceros mercki Jäger iz Yakutii [On remains of Parelephas wüsti (M. Pavl.) and Rhinoceros mercki Jäger from Yakutya]. Byulleten’ Komissii po izucheniyu chetvertichnogo perioda 21, 97104.Google Scholar
Dylis, N.V., 1981. Listvennitca [The larch]. Lesnaja Promyslennost’, Moscow.Google Scholar
Filonov, K.P., 1983. Los’ [Moose]. Lesnaja Promyslennost’, Moscow.Google Scholar
Flerov, K.K., 1989. Po stranitsam istorii zhivotnogo mira [Pages from the history of the animal world]. Izobrazitel’noe Iskusstvo, Moscow.Google Scholar
Fortelius, M., 1982. Ecological aspects of dental functional morphology in the Plio-Pleistocene rhinoceroses of Europe. In: Kurtén, B. (Ed.), Teeth: Form, Function and Evolution. Columbia University Press, New York, pp. 163181.Google Scholar
Fortelius, M., 1983. The morphology and paleobiological significance of the horns of Coelodonta antiquitatis (Mammalia, Rhinocerotidae). Journal of Vertebrate Paleontology 3, 125135.Google Scholar
Fortelius, M., Mazza, P., Sala, B., 1993. Stephanorhinus (Mammalia: Rhinocerotidae) of the western European Pleistocene, with a revision of S. etruscus (Falconer, 1868). Palaeontographia Italica 80, 63155.Google Scholar
Fritts, H.C., 1976. Tree Rings and Climate. Academic Press, London.Google Scholar
Garutt, N.V., 1994. Dental ontogeny of the “woolly rhinoceros” Coelodonta antiquitatis (Blumenbach, 1799). Cranium 11, 3748.Google Scholar
Garutt, V.E., Meteltseva, Е.P., Tikhomirov, B.А., 1970. Novye dannye o pische sherstistogo nosoroga v Sibiri [New data on the diet of the woolly rhinoceros in Siberia]. In: Tolmachev, A.I. (Ed.), Severnyi Ledovityi Okean i ego poberezhye v Kainozoe [The Arctic Ocean and its coast in the Cenozoic era]. Hydrometeoizdat, Leningrad, pp. 113125.Google Scholar
Goddard, J., 1970. Age criteria and vital statistics of a black rhinoceros population. African Journal of Ecology 8, 105121.Google Scholar
Gol’eva, A.A., 2001. Phytoliths and Their Informational Role in Natural and Archaeological Objects [In Russian.] Russian Academy of Sciences, Syktuvar Elista, Moscow.Google Scholar
Gorjanovich-Kramberger, D., 1913. Fossilni rinocerotidi Hrvatske I Slavonije, s osobitim obzirom na Rhinoceros mercki iz Krapine (De rhinocerotidibus fossilibus Croatie et Slavoniae, praecipua ratione habita Rhinocerotis mercki var. Krapinensis mihi). Djela Jugoslavenske Akademije znanosti i umjetnosti 22, 170.Google Scholar
Gouy, M., Guindon, S., Gascuel, O., 2010. SeaView version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Molecular Biology and Evolution 27, 221224.Google Scholar
Gromova, V.I., 1935. Ob ostatkakh nosoroga Merka (Rhinoceros Mercki Jaeg.) s Nizhnei Volgi. [On remains of Mercki’s rhinoceros (Rhinoceros mercki Jaeg.) from lower Volga River region]. Trudy Paleontologicheskogo Instituta Akademii Nauk SSSR 4, 91131.Google Scholar
Groves, C.P., 1983. Phylogeny of the living species of Rhinoceros. Journal of Zoological Systematics and Evolutionary Research 21, 293313.Google Scholar
Guérin, C., 1973. Les trois espèces de rhinocéros (Mammalia, Perissodactyla) du gisement Pleistocene moyen des Abîmes de la Fage à Noailles (Corrèze). Nouvelles archives du Muséum d’histoire naturelle de Lyon 11, 5584.Google Scholar
Guérin, C., 1980. Les rhinocéros (Mammalia, Perissodactyla) du Miocène terminal au Pléistocène supérieur en Europe occidentale; comparaison avec les espèces actuelles. Documents des. Laboratoires de Géologie Lyon 79, 11185.Google Scholar
Guérin, C., 1982. Premiére biozonation du Pleistocéne europeen, principal résultat biostratigraphique de l, e´tude des Rhinocerotidae (Mammalia, Perissodactyla) du Miocéne terminal au Pléistocéne supe´rieur d’Europe occidentale. Geobios 15, 593598.Google Scholar
Haase, E., 1914. Tiere der Vorzeit. Verlag von Quelle and Meyer, Leipzig, Germany.Google Scholar
Heintzman, P.D., Froese, D., Ives, J.W., Soares, A.E.R., Zazula, G.D., Letts, B., Andrews, T.D., et al 2016. Bison phylogeography constrains dispersal and viability of the Ice Free Corridor in western Canada. Proceedings of the National Academy of Sciences of the United States of America 113, 80578063.Google Scholar
Heintzman, P.D., Zazula, G.D., Cahill, J.A., Reyes, A.V., MacPhee, R.D.E., Shapiro, B., 2015. Genomic data from extinct North American Camelops revise camel evolutionary history. Molecular Biology and Evolution 32, 24332440.Google Scholar
Hillman-Smith, A.K.K., Owen-Smith, N., Anderson, J.L., Hall-Martin, A.J., Selaladi, J.P., 1986. Age estimation of the white rhinoceros (Ceratotherium simum). Journal of Zoology 210, 355377.Google Scholar
Hitchins, P.M., 1978. Age determination of the black rhinoceros (Diceros bicornis Linn.) in Zululand. South African Journal of Wildlife Research 8, 7180.Google Scholar
Kahlke, R.-D., Kaiser, T.M., 2011. Generalism as a subsistence strategy: advantages and limitations of the highly flexible feeding traits of Pleistocene Stephanorhinus undsheimensis (Rhinocerotidae, Mammalia). Quaternary Science Reviews 30, 22502261.Google Scholar
Klevezal, G.A., 1996. Recording Structures of Mammals. Determination of Age and Reconstruction of Life History. A.A. Balkema, Rotterdam, the Netherlands.Google Scholar
Klevezal, G.A., 2007. Printsipy i metody opredeleniya vozrasta mlekopitayushchikh. [Principles and methods of age determination of mammals]. KMK Science Press, Moscow.Google Scholar
Kubiak, H., 1969. Über die Bedeutung der Kadaver des Wollhaarnashorns von Starunia. Berichte den Deutschen Gesellschaft für Geologische Wissenschaften. Reihe A, Geologie und Paläontologie 14, 345347.Google Scholar
Kurtén, B., 1968. Pleistocene Mammals of Europe. Weidenfeld and Nicolson, London.Google Scholar
Lacombat, F., 2006. Morphological and biometrical differentiation of the teeth from Pleistocene species of Stephanorhinus (Mammalia, Perissodatyla, Rhinocerotidae) in Mediterranean Europe and the Massif Central, France. Palaeontographica, Abteilung A 274, 71111.Google Scholar
Larter, N.C., Gates, C.C., 1991. Diet and habitat selection of wood bison in relation to seasonal change in forage quantity and quality. Canadian Journal of Zoology 2677, 6985.Google Scholar
Lazarev, P.A., Тirskaya, N.F., 1975. Ob ostatkakh sherstistogo nosoroga v sele Churapcha (Tsentralnaya Yakutia) i o sporovo-pyltsevykh spektrakh vmeschayuschikh ikh otlozhenii [On remains of the wooly rhinoceros in the Churapcha village (central Yakutia) and the spore-pollen spectra of the enclosing sediments]. In: Ivanov, V.I. (Ed.), Palynologicheskie materialy v stratigrafii osadochnykh otlozhenii Yakutii. Izdatelstvo Yakutskogo Filiala Sibirskogo Otdeleniya Akademii Nauk SSSR, Yakutsk, Russia, pp. 6672.Google Scholar
Lomachenkov, V.S., 1957. Geologicheskoe stroenie i reliyef mezdurechii nizovyev reki Omoloi, reki Yana i reki Chondoona [Geological structure and relief of the Omoloi, Yana and Chondon Rivers]. Otchet NII Geologii Arktiki NPO «Sevmorgeo». Rosgeolfond, Moscow, Russia.Google Scholar
Longin, R., 1971. New method of collagen extraction for radiocarbon dating. Nature 230, 241242.Google Scholar
Loose, H., 1975. Pleistocene Rhinocerotidae of W. Europe with reference to the recent two-horned species of Africa and S.E. Asia. Scripta Geologica 33, 159.Google Scholar
Meyer, M., Kircher, M., 2010. Illumina sequencing library preparation for highly multiplexed target capture and sequencing. Cold Spring Harbor Protocols 2010. http://dx.doi.org/10.1101/pdb.prot5448.Google Scholar
Mook, W.G., 2006. Introduction to Isotope Hydrology. Taylor and Francis, London.Google Scholar
Mook, W.G., Streurman, H.J., 1983. Physical and chemical aspects of radiocarbon dating. In: Mook, W.G., Waterbolk, H.T. (Eds.), Proceedings of the First International Symposium: 14C and Archaeology, Groningen 1981. PACT 8. Council of Europe, Strasbourg, France, pp. 3155.Google Scholar
Mook, W.G., van der Plicht, J., 1999. Reporting 14C activities and concentrations. Radiocarbon 41, 227239.Google Scholar
Naurzbaev, M.M., Vaganov, E.A., 2000. Variation of summer and annual temperature in the east Taymir and Putoran (Siberia) over the last two millennia inferred from tree-rings. Journal of Geophysical Research 105, 73177327.Google Scholar
Nоwak, J., Panоw, Е., Tokarski, J., Szafer, W.Ł., Stасh, J., 1930. The second woolly rhinoceros (Coelodonta antiquitatis Blum.) from Starunia, Poland. Bulletin international de l’Académie polonaise des sciences et des lettres. Classe des sciences mathématiques et naturelles. Série B: sciences naturelles. N° Supplementaire, 147.Google Scholar
Persico, D., Billia, E.M.E., Ravara, S., Sala, B., 2015. The skull of Stephanorhinus kirchbergensis (Jäger, 1839) (Mammalia, Rhinocerotidae) from Spinadesco (Cremona, Lombardia, northern Italy): morphological analyses and taxonomical remarks – an opportunity for revising the three other skulls from the Po Valley. Quaternary Science Reviews 109, 2837.Google Scholar
Plakht, I.R., 1979. Stratigraphia and genesis kainozoiskikh otlozhenii vostochnogo poberezhia moria Laptevikh [Stratigraphy and genesis of the eastern coast of the Laptev Sea Cenozoic sediments]. In: Issledovania pribrezhnikh ravnin I shelfa Arcticheskikh morei [Research of coastal plain and shelf of the Arctic seas]. Izdatelstvo Moskovskogo Universiteta, Moscow, pp. 4760.Google Scholar
Prothero, D.R., Manning, E., Hanson, C.B., 1986. The phylogeny of the Rhinocerotoidea (Mammalia, Perissodactyla). Zoological Journal of the Linnean Society 87, 341366.CrossRefGoogle Scholar
Reimer, P.J., Bard, E., Bayliss, A., Beck, J.W., Blackwell, P.G., Bronk Ramsey, C., Buck, C.E., et al 2013. IntCal 13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55, 18691887.Google Scholar
Rivals, F., Julien, M.-A., Kuitems, M., Kolfschoten, T., van, Serangeli, J., Drucker, D.G., Bocherens, H., Conard, N.J., 2015. Investigation of equid paleodiet from Schöningen 13 II-4 through dental wear and isotopic analyses: archaeological implications. Journal of Human Evolution 89, 129137.Google Scholar
Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D.L., Darling, A., Hohna, S., Larget, B., Liu, L., Suchard, M.A., Huelsenbeck, J.P., 2012. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61, 539542.Google Scholar
Sangster, A.G., Parry, D.W., 1969. Some factors in relation to bulliform cell silicification in the grass leaf. Annals of Botany 33, 315323.Google Scholar
Schmalhausen, I., 1876. Vorläufiger Bericht über die Resultate mikroskopischer Untersuchungen der Futterreste eines sibirischen Rhinoceros antiquitatis seu tichorhinus. Bulletin de l’Académie impériale des sciences de St.-Pétersbourg 22, 291295.Google Scholar
Semprebon, G.M., Godfrey, I.R., Solounias, N., Sutherland, M.R., Jugers, W.L., 2004. Can low-magnification stereomicroscopy reveal diet? Journal of Human Evolution 47, 115144.Google Scholar
Semprebon, G.M., Rivals, F., 2007. Was grass more prevalent in the pronghorn past? An assessment of the dietary adaptations of Miocene to recent Antilocapridae (Mammalia: Artiodactyla). Palaeogeography, Palaeoclimatology, Palaeoecology 253, 332347.Google Scholar
Sher, A.V., 1981. To justification of the age of loose sediments of the middle reaches of the Alazeya River (Kolyma Lowland). [In Russian.] Reports of the Academy of Sciences of the USSR 258, 179–182.Google Scholar
Sher, A.V., 1984. The age of Quaternary deposits of the Yano-Kolyma Lowland and its mountain frame. [In Russian.] Reports of the Academy of Sciences of the USSR 278, 708–713.Google Scholar
Slon, V., Glocke, I., Barkai, R., Gopher, A., Hershkovitz, I., Meyer, M., 2016. Mammalian mitochondrial capture, a tool for rapid screening of DNA preservation in faunal and undiagnostic remains, and its application to middle Pleistocene specimens from Qesem Cave (Israel). Quaternary International 398, 210218.Google Scholar
Solounias, N., Semprebon, G., 2002. Advances in the reconstruction of ungulate ecomorphology with application to early fossil equids. American Museum Novitates 3366, 149.Google Scholar
Stamatakis, A., 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 13121313.Google Scholar
Timofeeva, E.K., 1974. Elk: Ecology, Distribution, Economic Importance [In Russian.] Leningrad State University, Leningrad.Google Scholar
Tomme, M.F., 1964. Korma SSSR: sostav i pitatel’nost’ [USSR fodders: composition and nutritional value]. Kolos, Moscow.Google Scholar
Tomskaya, A.I., 2000. Pitanie Yakutskogo Mamonta v pozdnem Pleistocene [The forage of the Yakutia mammoth in the late Pleistocene]. Museum Mammoth, Yakutsk, Russia.Google Scholar
Tong, H., 2012. Evolution of the non-Coelodonta dicerorhine lineage in China. Comptes Rendus Palevol 11, 555562.Google Scholar
Tong, H., Wu, X.Z., 2010. Stephanorhinus kirchbergensis (Rhinocerotidae, Mammalia) from the Rhino Cave in Shennongjia, Hubei. Chinese Science Bulletin 55, 11571168.Google Scholar
Twiss, P.C., 1987. Grass-opal phytoliths as climatic indicators of the Great Plains Pleistocene. In: Johnson, W.C. (Ed.), Quaternary Environments of Kansas. Guidebook Series 5. Kansas Geological Survey, Lawrence, KS, pp. 179188.Google Scholar
Twiss, P.C., Suess, E., Smith, R.M., 1969. Morphological classification of grass phytoliths. Soil Science of America Journal 33, 109115.Google Scholar
Vaganov, E.A., Shiyatov, S.G., Mazepa, V.S., 1996. Dendroclimatic Studies in Ural-Siberian Subarctic [In Russian.] Nauka, Novosibirsk, Russia.Google Scholar
Van der Made, J., 2010. The rhinos from the Middle Pleistocene of Neumark-Nord (Saxony-Anhalt). Veröffentlichungen des Landesamtes für Denkmalpflege und Archäologie 62, 433500.Google Scholar
Van der Made, J., 2014. The rhinoceros Stephanorhinus aff. etruscus from the latest early Pleistocene of Cueva Victoria (Murcia, Spain). Mastia 11–13, 359383.Google Scholar
Van der Made, J., Grube, R., 2010. The rhinoceroses from Neumark-Nord and their nutrition. In: Meller, H. (Ed.), Elefantenreich – Eine Fossilwelt in Europa [Elephant kingdom: a fossil world in Europe]. Landesmusem für Vorgeschichte, Halle, Germany, pp. 383394.Google Scholar
Van der Plicht, J., Palstra, S.W.L., 2016. Radiocarbon and mammoth bones: what’s in a date. Quaternary International 406, 246251.Google Scholar
Van der Plicht, J., Wijma, S., Aerts, A.T., Pertuisot, M.H., Meijer, H.A.J., 2000. Status report: the Groningen AMS facility. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 172, 5865.Google Scholar
Vasiliev, S.K., Serednyov, M.A., Milyutin, K.I., Slyusarenko, I.Y., Kozlikin, M.B., Chekha, A.M., 2015. Collecting of the theriofaunal materials at the Rivers Сhumysh (Altai region) and Ob’ near Bibikha village (Novosibirsk region) in 2015. In: Problems of Archaeology, Ethnography, Anthropology of Siberia and Neighboring Territories Vol. 21, [In Russian.] Institute of Archaeology and Ethnography of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia, pp. 3640.Google Scholar
Walker, A., Hoek, H.N., Perez, L., 1978. Microwear of mammalian teeth as an indicator of diet. Science 201, 908910.Google Scholar
Yatsenko-Khmelevsky, А.А., 1954. Osnovy i metody anatomicheskogo issledovaniya drevesiny [Fundamentals and methods of anatomical investigation of wood]. USSR Academy of Sciences, Moscow-Leningrad.Google Scholar
Zeuner, F., 1934. Die Beziehungen zwischen Schädelform und Lebensweise bei den rezenten und fossilen Nashörnern. Berichte der Naturforschenden Gesellshaft zu Freiburg i. B 34, 2180.Google Scholar
Ziegler, R., 1995. Pleistozane Säugetierfaunen von Genkingen bei Reutlingen (Baden-Württemberg). Stuttgarter Beiträge zur Naturkunde, Serie B 234, 143.Google Scholar
Supplementary material: Image

Kirillova et al supplementary material 1

Supplementary Figure

Download Kirillova et al supplementary material 1(Image)
Image 11 MB
Supplementary material: PDF

Kirillova et al supplementary material 2

Kirillova et al supplementary material

Download Kirillova et al supplementary material 2(PDF)
PDF 33.1 KB
Supplementary material: PDF

Kirillova et al supplementary material 3

Kirillova et al supplementary material

Download Kirillova et al supplementary material 3(PDF)
PDF 243.4 KB
Supplementary material: PDF

Kirillova et al supplementary material 4

Kirillova et al supplementary material

Download Kirillova et al supplementary material 4(PDF)
PDF 151.7 KB
Supplementary material: File

Kirillova et al supplementary material 5

Kirillova et al supplementary material

Download Kirillova et al supplementary material 5(File)
File 36.6 KB
Supplementary material: File

Kirillova et al supplementary material 6

Kirillova et al supplementary material

Download Kirillova et al supplementary material 6(File)
File 16.3 KB
Supplementary material: File

Kirillova et al supplementary material 7

Kirillova et al supplementary material

Download Kirillova et al supplementary material 7(File)
File 41 KB
Supplementary material: File

Kirillova et al supplementary material 8

Kirillova et al supplementary material 8

Download Kirillova et al supplementary material 8(File)
File 16.4 KB
Supplementary material: File

Kirillova et al supplementary material 8

Kirillova et al supplementary material

Download Kirillova et al supplementary material 8(File)
File 72.3 KB
Supplementary material: File

Kirillova et al supplementary material 9

Kirillova et al supplementary material

Download Kirillova et al supplementary material 9(File)
File 15.2 KB
Supplementary material: File

Kirillova et al supplementary material 10

Kirillova et al supplementary material

Download Kirillova et al supplementary material 10(File)
File 14.5 KB