Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-18T18:08:35.879Z Has data issue: false hasContentIssue false

The decline of the early Neolithic population center of 'Ain Ghazal and corresponding earth-surface processes, Jordan Rift Valley

Published online by Cambridge University Press:  29 September 2012

Christoph Zielhofer*
Affiliation:
Physical Geography, Leipzig University, Johannisallee 19a, D-04103 Leipzig, Germany
Lee Clare
Affiliation:
Institute of Prehistoric Archaeology, Cologne University, Weyertal 125, D-50923 Cologne, Germany
Gary Rollefson
Affiliation:
Whitman College, 345 Boyer Avenue Walla Walla, WA 99362, USA
Stephan Wächter
Affiliation:
Institute of Prehistoric Archaeology, Cologne University, Weyertal 125, D-50923 Cologne, Germany
Dirk Hoffmeister
Affiliation:
Institute of Geography, Cologne University, Zülpicher Straße 47, D-50674 Cologne, Germany
Georg Bareth
Affiliation:
Institute of Geography, Cologne University, Zülpicher Straße 47, D-50674 Cologne, Germany
Christopher Roettig
Affiliation:
Institute of Geography, Dresden University of Technology, Helmholzstr. 10, D-01069 Dresden, Germany
Heike Bullmann
Affiliation:
Physical Geography, Leipzig University, Johannisallee 19a, D-04103 Leipzig, Germany
Birgit Schneider
Affiliation:
Physical Geography, Leipzig University, Johannisallee 19a, D-04103 Leipzig, Germany
Hubert Berke
Affiliation:
Institute of Prehistoric Archaeology, Cologne University, Weyertal 125, D-50923 Cologne, Germany
Bernhard Weninger
Affiliation:
Institute of Prehistoric Archaeology, Cologne University, Weyertal 125, D-50923 Cologne, Germany
*
Corresponding author. Email Address:[email protected]

Abstract

'Ain Ghazal is among the earliest large population centers known in the Middle East. A total of four major stratigraphic cultural units have been identified: 1) The oldest Middle Pre-Pottery Neolithic B (MPPNB) unit (10.2 to 9.5 cal ka BP) clearly corresponds with the early Holocene maximum Dead Sea levels. 2) The second unit consists of Late Pre-Pottery Neolithic B (LPPNB) in situ walls and hearths. 3) In the subsequent PPNC (8.9 to 8.6 cal ka BP) the population density at the settlement drops dramatically, which corresponds with a significant drop in the Dead Sea level. 4) The 4th stratigraphic unit is characterized by the “Yarmoukian rubble layer”. Additionally, there is evidence for a previously unrecognized use of the site by Chalcolithic pastoralists. Sedimentological analyses reveal a constant increase in dust from a remote source during the entire human occupation period, which correlates well with the detectable drops in climatic humidity from the Dead Sea. As the major focus of this study, we can now rule out previous notions that the “Yarmoukian” rubble layer could have been produced by (catastrophic) slope-scale gravitational movements. To this point, it appears that the Neolithic mega-site was abandoned due to a climatic aridification.

Type
Articles
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alley, R.B., Mayewski, P.A., Sowers, T., Stuiver, M., Taylor, K.C., and Clark, P.U. Holocene climatic instability: a prominent, widespread event 8200 yr ago. Geology 25, (1997). 483486.Google Scholar
Barber, D.C., Dyke, A., Hillaire-Marcel, C., Jennings, A.E., Andrews, J.T., Kerwin, M.V., Bilodeau, G., McNeely, R., Southon, J., Morehead, M.D., and Gagnon, J.M. Forcing of the cold event of 8,200 years ago by catastrophic drainage of Laurentide lakes. Nature 400, (1999). 344348.Google Scholar
Bar-Matthews, M., and Ayalon, A. Mid-Holocene climate variations revealed by high-resolution speleothem records from Soreq Cave, Israel and their correlation with cultural changes. The Holocene 21, (2011). 163171.CrossRefGoogle Scholar
Bar-Matthews, M., Ayalon, A., Gilmour, M., Matthews, A., and Hawkesworth, C.J. Sea-land oxygen isotopic relationships from planktonic foraminifera and speleothems in the Eastern Mediterranean region and their implication for paleorainfall during interglacial intervals. Geochimica et Cosmochimica Acta 67, (2003). 31813199.Google Scholar
Barzilay, E. The geological setting. Khalaily, H., and Marder, O. The Neolithic Site of Abu Ghosh. The 1995 Excavations. Israel Antiquities Authority Reports 19, (2003). 311.Google Scholar
Besl, P.J., and McCoy, N.D. A method for registration of 3-D shapes. IEEE Transactions on Pattern Analysis and Machine Intelligence 14, (1992). 239256.Google Scholar
Cohen-Seffera, R., Greenbaum, N., Sivan, D., Jull, T., Barmeir, E., Croitoru, S., and Inbar, M. Late Pleistocene–Holocene marsh episodes along the Carmel coast, Israel. Quaternary International 140, 141 (2005). 103120.Google Scholar
Cropper, D., Foley, C.M., and Rollefson, G.O. Umm Meshrat I and II: two Late Neolithic Sites along the Wadi ath-Thamad, Jordan. Ninow, F. Wort und Stein. Studien zur Theologie und Archäologie. Festschrift für Udo Worschech. (2003). Peter Lang, Frankfurt am Main. 1532.Google Scholar
Crouvi, O., Amit, R., Enzel, Y., Porat, N., and Sandler, A. Sand dunes as a major proximal dust source for late Pleistocene loess in the Negev Desert, Israel. Quaternary Research 70, (2008). 275282.Google Scholar
Dearing, J. Environmental Magnetic Susceptibility: Using the Bartington MS2 System. 2nd edition (1999). Kenilworth, UK, Chi Publishing.Google Scholar
Develle, A.L., Gasse, F., Vidal, L., Williamson, D., Demory, F., Van Campo, E., Ghaleb, B., and Thouveny, N. A 250 ka sedimentary record from a small karstic lake in the Northern Levant (Yammoûneh, Lebanon). Palaeogeography, Palaeoclimatology, Palaeoecology 305, (2011). 1027.Google Scholar
Enzel, Y., Bookman (Ken Tor), R., Sharon, D., Gvirtzman, H., Dayan, U., Ziv, B., and Stein, M. Late Holocene climates of the Near East deduced from Dead Sea level variations and modern regional winter rainfall. Quaternary Research 60, (2003). 263273.Google Scholar
Erell, E., and Tsoar, H. Spatial variations in the aeolian deposition of dust – the effect of the city. A case study in Be'er Shava, Israel. Atmospheric Environment 33, (1999). 40494055.CrossRefGoogle Scholar
Fletcher, W.J., Zielhofer, C., in press. Fragility of Western Mediterranean landscapes during Holocene Rapid Climate Changes. Catena, http://dx.doi.org/10.1016/j.catena.2011.05.001.Google Scholar
Fuchs, M., and Lang, A. Luminescence dating of hillslope deposits – a review. Geomorphology 109, (2009). 1726.Google Scholar
Gebel, H.G.K. Site preservation and site formation processes. Nissen, H.J., Muheisen, M., and Gebel, H.G.K. Basta I. The Human Ecology (2004). Ex oriente, Berlin. 96116.Google Scholar
Gebel, H.G.K. The intricacy of Neolithic Rubble Layers. The Ba'ja, Basta, and 'Ain Hahub evidence. Neo-Lithics 01, 09 (2009). 3348.Google Scholar
Gebel, H.G.K. Southern Levant's cultural frameworks of neolithic environments. Tinapp, C., and Zielhofer, C. Bodenarchive im geoarchäologischen Kontext. Gemeinsame Jahrestagung AK Geoarchäologie und AG Paläopedologie Leipzig 2012, Tagungsband. (2012). 27 Google Scholar
Gebel, H.G.K., and Kinzel, M. Ba'ja 2007. Crawl spaces, rich room dumps, and high energy events. Results of the 7th season of excavations. Neo-Lithics 1, 07 (2007). 2433.Google Scholar
Gómez-Paccard, M., Larrasoaña, J.C., Sancho, C., Muñoz, A., McDonald, E., Rhodes, E.J., Osácar, M.C., Costa, E., Beamud, E., in press. Environmental response of a fragile, semiarid landscape (Bardenas Reales Natural Park, NE Spain) to Early Holocene climate variability: A paleo- and environmental-magnetic approach. Catena. http://dx.doi.org/10.1016/j.catena.2011.05.013.Google Scholar
Goudie, A.S., and Middleton, N.J. Saharan dust storms: nature and consequences. Earth-Science Reviews 56, (2001). 179204.Google Scholar
Gregoire, L.J., Payne, A.J., and Valdes, P.J. Deglacial rapid sea level rises caused by ice-sheet saddle collapses. Nature 487, (2012). 219222.CrossRefGoogle ScholarPubMed
Hetherington, D. Laser scanning: data quality, protocols and general issues. Heritage, G.L., and Large, A.R.G. Laser Scanning for the Environmental Sciences. (2009). Wiley-Blackwell, Chichester. 83101.Google Scholar
Hoffmeister, D., Bolten, A., Curdt, C., Waldhoff, G., and Bareth, G. High resolution Crop Surface Models (CSM) and Crop Volume Models (CVM) on field level by terrestrial laser scanning. Proc. SPIE 7840, (2010). 78400E http://dx.doi.org/10.1117/12.872315 6 p Google Scholar
Hoffmeister, D., Natageretzis, K., Aasen, H., Curdt, C., Hadler, H., Willershäuser, T., Bareth, G., Brückner, H., and Vött, A. Quasi-realistic 3D model-based estimations of volume and mass of high-energy dislocated boulders in coastal areas of Greece by the Terrestrial Laser Scanning technique. Zeitschrift für Geomorphologie 55, Suppl. 4 (2011). 121.Google Scholar
Kafafi, Z. Jebel Abu Thawwab: a pottery Neolithic village in North Jordan. Garrard, A., and Gebel, H.G. The Prehistory of Jordan. The State of Research in 1986. British Archaeological Reports, International Series 396, (1988). BAR, Oxford. 451471.Google Scholar
Kafafi, Z., and Rollefson, G. The 1994 Excavations at 'Ain Ghazal: Preliminary Report. Annual of the Department of Antiquities of Jordan 39, (1995). 1329.Google Scholar
Kafafi, Z., Lucke, B., and Bäumler, R. Environmental and architectural change at the Neolithic site of 'Ain Ghazal. Neo-Lithics 1, 2009 (2009). 2432.Google Scholar
Kingery, W., Vandiver, P., and Prickett, M. The beginnings of pyrotechnology, Part II: production and use of lime plaster in the Pre-Pottery Neolithic of the Near East. Journal of Field Archaeology 15, (1988). 219244.Google Scholar
Köhler-Rollefson, I. Resolving the revolution: Late Neolithic refinements of economic strategies in the Eastern Levant. Archaeozoologia 3, (1989). 201208.Google Scholar
Köhler-Rollefson, I., and Rollefson, G. The impact of Neolithic subsistence strategies on the environment: the case of 'Ain Ghazal, Jordan. Bottema, et al. Man's Role in the Shaping of the Eastern Mediterranean Landscape. (1990). Balkema, Rotterdam. 314.Google Scholar
Köhler-Rollefson, I., Gillespie, W., and Metzger, M. The fauna from Neolithic 'Ain Ghazal. Garrard, A., and Gebel, H.G. The Prehistory of Jordan. The State of Research in 1986, Part II. Oxford: BAR International Series 396, (1988). 423430.Google Scholar
Lang, A., and Hönscheidt, S. Age and source of colluvial sediments at Vaihingen–Enz, Germany. Catena 38, (1999). 89107.Google Scholar
Leitholdt, E., Krüger, A., Zielhofer, C., in press. The medieval Peat Layer of the Fossa Carolina – Evidence for bridging the Central European Watershed or climate control?. Zeitschrift für Geomorphologie N.F. Suppl.Google Scholar
Mayewski, P.A., Rohling, E.E., Stager, J.C., Karlen, W., Maascha, K.A., Meeker, L.D., Meyerson, E.A., Gasse, F., van Kreveld, S., Holmgrend, K., Lee-Thorph, J., Rosqvist, G., Racki, F., Staubwasser, M., Schneider, R.R., and Steig, E.J. Holocene climate variability. Quaternary Research 62, (2004). 243255.Google Scholar
Mensching, H.G. Desertification. A worldwide problem of the ecological devastations in the arid zones of the earth. (1990). Wissenschaftliche Buchgesellschaft, Darmstadt. 170 p Google Scholar
Migowski, C., Stein, M., Prasad, S., Negendank, J.F.W., and Agnon, A. Holocene climate variability and cultural evolution in the Near East from the Dead Sea sedimentary record. Quaternary Research 66, (2006). 421431.Google Scholar
Mischke, S., Almogi-Labin, A., ortal, R., Rosenfeld, Arik, Schwab, M.J., and Boomer, I. Quantitative reconstruction of lake conductivity in the Quaternary of the Near East (Israel) using ostracods. Journal of Paleolimnology 43, (2010). 667688.Google Scholar
Muheisen, M., Gebel, H.G., Hannss, C., and Neef, R. Excavations at 'Ain Rahub, a final Natufian and Yarmoukian site near Irbid. Garrard, A., and Gebel, H.G. The prehistory of Jordan. The State of Research in 1986. BAR International Series 396, (1988). 451471. Oxford Google Scholar
Neef, R. Vegetation and climate. A comparison between PPNB 'Ain Ghazal and Basta. Bienert, H.D., Gebel, H.G.K., and Neef, R. Central Settlements in Neolithic Jordan. Studies in Early Near Eastern Production, Subsistence, and Environment 5. Proceedings of a symposium held in Wadi Musa, Jordan, 21st-25th of July, 1997. (2004). Ex oriente, Berlin. 289299.Google Scholar
Pustovoytov, K., Deckers, K., and Goldberg, P. Genesis, age and archaeological significance of a pedosediment in the depression around Tell Mozan, Syria. Journal of Archaeological Science 38, (2011). 913924.Google Scholar
Reimer, P.J., Baillie, M.G.L., Bard, E., Bayliss, A., Beck, J.W., Blackwell, P.G., Bronk, Ramsey C., Buck, C.E., Burr, G.S., Edwards, R.L., Friedrich, M., Grootes, P.M., Guilderson, T.P., Hajdas, I., Heaton, T.J., Hogg, A.G., Hughen, K.A., Kaiser, K.F., Kromer, B., McCormac, F.G., Manning, S.W., Reimer, R.W., Richards, A.A., Southon, J.R., Talamo, S., Turney, C.S.M., van der Plicht, J., and Weyhenmeyer, C.E. IntCal09 and Marine09 radiocarbon age calibration curves, 0–50,000 years cal BP. Radiocarbon 51, (2009). 11111150.Google Scholar
Rohdenburg, H. Landscape ecology, geomorphology. (1989). Catena, Reiskirchen.Google Scholar
Rohling, E., and Pälike, H. Centennial-scale climate cooling with a sudden cold event around 8,200 years ago. Nature 434, (2005). 975979.Google Scholar
Rohling, E.J., Mayewski, P.A., Abu-Zied, R.H., Casford, J.S.L., and Hayes, A. Holocene atmosphere–ocean interactions: records from Greenland and the Aegean Sea. Climate Dynamics 18, (2002). 587593.Google Scholar
Rollefson, G. The origins of the Yarmoukian at 'Ain Ghazal. Paléorient 19, 1 (1993). 8998.Google Scholar
Rollefson, G. Expanded radiocarbon chronology from 'Ain Ghazal. Neo-Lithics 2, 98 (1998). 810.Google Scholar
Rollefson, G. The Neolithic period. Adams, R. Jordan, an Archaeological Reader. (2008). Equinox, London. 71108.Google Scholar
Rollefson, G. Slippery slope: the Late Neolithic rubble layer in the Southern Levant. Neo-Lithics 01/09 (2009). Google Scholar
Rollefson, G., and Kafafi, Z. The 1993 Season at 'Ain Ghazal: Preliminary Report. Annual of the Department of Antiquities of Jordan 38, (1994). 1132.Google Scholar
Rollefson, G., and Köhler-Rollefson, I. Early Neolithic exploitation patterns in the Levant: cultural impact on the environment. Population and Environment: A Journal of Interdisciplinary Studies 13, 4 (1992). 243254.Google Scholar
Rollefson, G., and Simmons, A. The Neolithic village of 'Ain Ghazal, Jordan: preliminary report on the 1985 season. Bulletin of the American Schools of Oriental Research Supplement 25, (1987). 93106.Google Scholar
Rollefson, G., Quintero, L., and Wilke, P. Purple-pink flint sources in Jordan. Delage, C. Chert Availability and Prehistoric Exploitation in the Near East: Oxford, British Archaeological Reports (BAR). International Series S1615, (2007). 5567.Google Scholar
Ronen, A. Post-Pleistocene stony layers in East Mediterranean sites. Quartär 22, (1971). 7393.Google Scholar
Schlichting, E., Blume, H.P., and Stahr, K. Bodenkundliches Praktikum. (1995). Blackwell, Berlin, Wien. 295 pp Google Scholar
Simmons, A.H., Köhler-Rollefson, I., Rollefson, G.O., Mandel, R., and Kafafi, Z. 'Ain Ghazal: a major Neolithic settlement in Central Jordan. Science 240, (1988). 3539.Google Scholar
Simmons, A.H., Rollefson, G., Kafafi, Z., Mandel, R.D., an-Nahar, M., Cooper, J., Köhler-Rollefson, I., and Roler Durand, K. Wadi Shu'eib, a large Neolithic community in Central Jordan: final report of test excavations. Bulletin of the American Schools of Oriental Research 321, (2001). 139.Google Scholar
Singer, A., Ganor, E., Dultz, S., and Fischer, W. Dust deposition over the Dead Sea. Journal of Arid Environments 53, (2003). 4159.Google Scholar
Staubwasser, M., and Weiss, H. Holocene climate and cultural evolution in late prehistoric–early historic West Asia. Quaternary Research 66, (2006). 372387.Google Scholar
Stein, M., Torfstein, A., Gavrieli, I., and Yechieli, Y. Abrupt aridities and salt deposition in the post-glacial Dead Sea and their North Atlantic connection. Quaternary Science Reviews 29, (2010). 567575.Google Scholar
Telfah, J.A., and Kafafi, Z. Plaster floor production at the Neolithic site of Ain Ghazal, Jordan. Mediterranean Archaeology and Archaeometry 3, (2003). 5363.Google Scholar
Tsoar, H., and Pye, K. Dust transport and the question of loess formation. Sedimentology 34, (1987). 139153.Google Scholar
Vogel, B., Hoose, C., Vogel, H., and Kottmeier, C. A model of dust transport applied to the Dead Sea area. Meteorologische Zeitschrift 15, (2006). 611624.CrossRefGoogle Scholar
Weninger, B. Yarmoukian rubble slides. Evidence for Early Holocene rapid climate change in Southern Jordan. Neo-Lithics 1, 09 (2009). 511.Google Scholar
Weninger, B., and Jöris, O. A 14C age calibration curve for the last 60 ka: the Greenland-Hulu U/Th timescale and its impact on understanding the Middle to Upper Paleolithic transition in Western Eurasia. Journal of Human Evolution 55, (2008). 772781.Google Scholar
Weninger, B., Alram-Stern, E., Bauer, E., Clare, L., Danzeglocke, U., Jöris, O., Kubatzki, C., Rollefson, G., Todorova, H., and van Andel, T. Climate forcing due to the 8200 cal yr BP event observed at Early Neolithic sites in the eastern Mediterranean. Quaternary Research 66, (2006). 401420.Google Scholar
Weninger, B., Clare, L., Rohling, E., Bar-Yosef, O., Böhner, U., Budja, M., Bundschuh, M., Feurdean, A., Gebel, H.G., Hilpert, J., Jöris, O., Linstädter, J., Mayewski, P., Mühlenbruch, T., Reingruber, A., Rollefson, G., Schyle, D., Thissen, L., Todorova, H., and Zielhofer, C. The impact of rapid climate change on prehistoric societies during the Holocene in the Eastern Mediterranean. Documenta Praehistorica Ljubljana 36, (2009). 759.Google Scholar
Zielhofer, C., Weninger, B., in press. Comment on:“Holocene climate variability in the Levant from the Dead Sea pollen record�.� by Litt, T., Ohlwein, C., Neumann, F.H., Hense, A., Stein, M. [Quaternary Science Reviews 49, (2012). 95105.]. Quaternary Science Reviews.Google Scholar
Zielhofer, C., Recio Espejo, J.M., Nunez Granados, M.A., and Faust, D. Durations of soil formation and soil development indices in a Holocene Mediterranean floodplain. Quaternary International 2009, (2009). 4465.CrossRefGoogle Scholar
Zielhofer, C., Bussmann, J., Ibouhouten, H., and Fenech, K. Flood frequencies reveal Holocene rapid climate changes (Lower Moulouya River, northeastern Morocco). Journal of Quaternary Science 25, (2010). 700714.Google Scholar