Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-27T11:44:29.328Z Has data issue: false hasContentIssue false

Deciphering late Quaternary land snail shell δ18O and δ13C from Franchthi Cave (Argolid, Greece)

Published online by Cambridge University Press:  20 January 2017

André C. Colonese*
Affiliation:
BioArCh, Department of Archaeology, University of York, Biology S. Block, York, YO10 5YW, UK
Giovanni Zanchetta
Affiliation:
Dipartimento di Scienze della Terra, Università di Pisa, Via S. Maria, 53, 56126 Pisa, Italy IGG-CNR Via Moruzzi, 1 56100 Pisa, Italy INGV sez. Pisa, Via della Faggiola 32, 56126 Pisa, Italy
Catherine Perlès
Affiliation:
Université de Paris Ouest Nanterre La Défense, CNRS, UMR 7055, Paris, France
Russell N. Drysdale
Affiliation:
Department of Resource Management and Geography, University of Melbourne, Victoria 3010, Australia
Giuseppe Manganelli
Affiliation:
Dipartimento di Scienze Ambientali, Università di Siena, Via P.A. Mattioli 4, 53100 Siena, Italy
Ilaria Baneschi
Affiliation:
IGG-CNR Via Moruzzi, 1 56100 Pisa, Italy
Elissavet Dotsika
Affiliation:
Institute of Materials Science, National Center of Scientific Research "Demokritos", GR15310 Ag. Paraskevi, Attikis, Greece
Hélène Valladas
Affiliation:
Laboratoire des Sciences du Climat et de l'Environnement (LSCE/IPSL), CEA-CNRS-UVSQ, Bâtiment 12, Avenue de la Terrasse, 91198, Gif-sur-Yvette Cedex, France
*
*Corresponding author. E-mail address:[email protected], [email protected] (A.C. Colonese), [email protected] (G. Zanchetta), [email protected] (C. Perlès), [email protected] (R.N. Drysdale), [email protected] (G. Manganelli), [email protected] (I. Baneschi), [email protected] (E. Dotsika), [email protected] (H. Valladas).

Abstract

This paper investigates the stable isotopic composition from late Pleistocene–Holocene (~ 13 to ~ 10.5 cal ka BP) shells of the land snail Helix figulina, from Franchthi Cave (Greece). It explores the palaeoclimatic and palaeoenvironmental implications of the isotope palaeoecology of archaeological shells at the time of human occupation of the cave. Modern shells from around the cave were also analysed and their isotopic signatures compared with those of the archaeological shells. The carbon isotope composition of modern shells depicts the consumption of C3 vegetation. Shell oxygen isotopic values are consistent with other Mediterranean snail shells from coastal areas. Combining empirical linear regression and an evaporative model, the δ18Os suggest that modern snails in the study area are active during periods of higher relative humidity and lower rainfall δ18O, probably at night. Late glacial and early Holocene δ18Os show lower values compared to modern ones. Early Holocene δ18Os values likely track enhanced moisture and isotopic changes in the precipitation source. By contrast, lower late glacial δ18O could reflect lower temperatures and δ18Op, compared to the present day. Shell carbon isotope values indicate the presence of C3 vegetation as main source of carbon to late glacial and early Holocene snails.

Type
Original Articles
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Argiriou, A.A., Lykoudis, S., (2006). Isotopic composition of precipitation in Greece. Journal of Hydrology 327, 486495.CrossRefGoogle Scholar
Argiriou, A.A., Lykoutis, S., (2005). Stable isotopes in rainfall over Greece: results of the 2000–2003 measurement campaign. IAEA-TECDOC-1453. 8389.Google Scholar
Balakrishnan, M., Yapp, C.J., (2004). Flux balance model for the oxygen and carbon isotope compositions of land snail shells. Geochimica et Cosmochimica Acta 68, 20072024.CrossRefGoogle Scholar
Baldini, L.M., Walker, S.E., Bruce, R., Baldini, J.U.L., Crowe, D.E., (2007). Isotope ecology of the modern land snails Cerion, San Salvador, Bahamas: preliminary advances toward establishing a low-latitude island palaeoenvironmental proxy. Palaios 22, 174187.CrossRefGoogle Scholar
Bar-Matthews, M., Ayalon, A., Kaufman, A., (2000). Timing and hydrological conditions of Sapropel events in the eastern Mediterranean, as evident from speleothems, Soreq cave, Israel. Chemical Geology 169, 145156.Google Scholar
Björck, S., Walker, M.J.C., Cwynar, L.C., Johnsen, S., Knudsen, K.-L., Lowe, J., Wohlfarth, B., (1998). An event stratigraphy for the Last Termination in the north Atlantic region based on the Greenland ice-core record: a proposal by the INTIMATE group. Journal of Quaternary Science 13, 283292.Google Scholar
Colonese, A.C., Zanchetta, G., Fallick, A.E., Martini, F., Manganelli, G., Lo Vetro, D., (2007). Stable isotope composition of Late Glacial land snail shells from Grotta del Romito (southern Italy): palaeoclimatic implications. Palaeogeography, Palaeoclimatology, Palaeoecology 254, 3–4 550560.CrossRefGoogle Scholar
Colonese, A.C., Zanchetta, G., Fallick, A.E., Martini, F., Manganelli, G., Drysdale, R.N., (2010a). Stable isotope composition of Helix ligata (Müller, 1774) from Late Pleistocene–Holocene archaeological record from Grotta della Serratura (southern Italy): Palaeoclimatic implications. Global and Planetary Change 71, 249257.CrossRefGoogle Scholar
Colonese, A.C., Zanchetta, G., Dotsika, E., Drysdale, R.N., Fallick, A.E., Grifoni Cremonesi, R., Manganelli, G., (2010b). Early Holocene land snail shell stable isotope record from Grotta di Latronico 3 (southern Italy). Journal of Quaternary Science 25, 8 13471359.Google Scholar
Colonese, A.C., Zanchetta, G., Drysdale, R.N., Fallick, A.E., Manganelli, G., Lo, Vetro D., Martini, F., Di Giuseppe, Z., (2011). Stable isotope composition of Late Pleistocene–Holocene Eobania vermiculata (Müller, 1774) (Pulmonata, Stylommatophora) shells from the Central Mediterranean basin: data from Grotta d'Oriente (Favignana, Sicily). Quaternary International 244, 7687.Google Scholar
Cook, A., (2001). Behavioural ecology: on doing the right thing, in the right place at the right time. Barker, G.M., The Biology of Terrestrial Molluscs. InCAB International, Wallingford.447487.Google Scholar
Dormoy, I., Peyron, O., Combourieu-Nebout, N., Goring, S., Kotthoff, U., Magny, M., Pross, J., (2009). Terrestrial climate variability and seasonality changes in the Mediterranean region between 15 000 and 4000 years BP deduced from marine pollen records. Climate of the Past 5, 615632.Google Scholar
Dotsika, E., Lykoudis, S., Poutoukis, D., (2010). Spatial distribution of the isotopic composition of precipitation and spring water in Greece. Global and Planetary Change 71, 141149.Google Scholar
Douka, K., Perlès, C., Valladas, H., Vanhaeren, M., Higham, T., (2011). Franchthi Cave revisited: the age of the Aurignacian in south-eastern Europe. Antiquity 85, 330 11311150.CrossRefGoogle Scholar
Farrand, W.R., (2000). Depositional history of Franchthi Cave: stratigraphy, sedimentology, and chronology. Excavations at Franchthi Cave, Greece, 7. Indiana University Press, Bloomington.Google Scholar
Filella, I., Peñuelas, J., (2003). Partitioning of water and nitrogen in co-occurring Mediterranean woody shrub species of different evolutionary history. Oecologia 137, 5161.Google Scholar
Flocas, A.A., Giles, B.D., (1991). Distribution and intensity of frontal rainfall over Greece. International Journal of Climatology 14, 429442.Google Scholar
Gavrielides, N., (1976). The impact of olive growing on the landscape in the Fourni Valley. Annals of the New York Academy of Sciences 268, 143157.Google Scholar
Georgiev, D., Stoycheva, S., (2010). Notes on the ecology and species diversity of the inland molluscs of Samothraki Island (north-eastern Greece). North-Western Journal of Zoology 6, 1 7178.Google Scholar
Geraga, M., Tsaila-Monopolis, St, Ioakim, C., Papatheodorou, G., Ferentinos, G., (2000). Evaluation of palaeoenvironmental changes during the last 18,000 years in the Myrtoon basin, SW Aegean Sea. Palaeogeography, Palaeoclimatology, Palaeoecology 156, 117.CrossRefGoogle Scholar
Geraga, M., Tsaila-Monopolis, M., Ioakim, C., Papatheodorou, G., Ferentinos, G., (2005). Short-term climate changes in the southern Aegean Sea over the last 48,000 years. Palaeogeography, Palaeoclimatology, Palaeoecology 220, 311332.Google Scholar
Gittenberger, E., Goodfriend, G.A., (1993). Land snails from the last glacial maximum on Andikithira, southern Greece and their palaeoclimatic implications. Journal of Quaternary Science 8, 2 109116.Google Scholar
Giusti, F., Castagnolo, L., (1982). I molluschi terrestri delle dune italiane: brevi cenni di ecologia, elenco delle specie e chiavi per il loro riconoscimento. Estratto da Quaderni sulla “Struttura delle Zoocenosi Terrestri” 3, Ambienti mediterranei 1, Le coste sabbiose. C.N.R, Roma.Google Scholar
Giusti, F., Manganelli, G., Schembri, P.J., (1995). The non-marine molluscs of the Maltese Islands. Monografie Museo Regionale di Scienze Naturali 15, (Torino).Google Scholar
Gogou, A., Bouloubassi, I., Lykousis, V., Arnaboldi, M., Gaitani, M., Meyers, P.A., (2007). Organic geochemical evidence of Late Glacial–Holocene climate instability in the North Aegean Sea. Palaeogeography, Palaeoclimatology, Palaeoecology 256, 120.Google Scholar
Goodfriend, G.A., (1991). Holocene trends in 18O in land snail shells from the Negev Desert and their implications for changes in rainfall source areas. Quaternary Research 35, 417426.Google Scholar
Goodfriend, G.A., Hood, D.G., (1983). Carbon isotope analysis of land snail shells: implications for carbon sources and radiocarbon dating. Radiocarbon 25, 810830.Google Scholar
Goodfriend, G.A., Magaritz, M., (1987). Carbon and oxygen isotope composition of shell carbonate of desert land snails. Earth and Planetary Science Letters 86, 377388.CrossRefGoogle Scholar
Goodfriend, G.A., Magaritz, M., Gat, J.R., (1989). Stable isotope composition of land snail body-water and its relation to environmental waters and shell carbonate. Geochimica et Cosmochimica Acta 53, 32153221.CrossRefGoogle Scholar
Griffiths, S.J., Street-Perrott, F.A., Holmes, J.A., Leng, M.J., Tzedakis, C., (2002). Chemical and isotopic composition of modern water bodies in the Lake Kopais Basin, central Greece: analogues for the interpretation of the lacustrine sedimentary sequence. Sedimentary Geology 148, 79103.Google Scholar
Hajdas, I., Taricco, C., Bonani, G., Beer, J., Bernasconi, S.M., Wacker, L., (2011). Anomalous radiocarbon ages found in Campanian Ignimbrite deposit of the Mediterranean deep-sea core CT85-5. Radiocarbon 53, 4 575583.Google Scholar
Hammer, Ø., Harper, D.A.T., Ryan, P.D., (2001). PAST: Paleontological Statistics Software Package for education and data analysis. Palaeontologia Electronica 4, 1 9.Google Scholar
Hansen, J.M., (1991). The palaeoethnobotany of Franchthi Cave. Excavations at Franchthi Cave, Greece, Fasc. 7. Indiana University Press, Bloomington and Indianapolis.Google Scholar
Jacobsen, T.W., Farrand, W.R., (1987). Franchthi Cave and Paralia. Maps, Plans and Sections. Excavations at Franchthi Cave, Fasc. 1. Indiana University Press, Bloomington/Indianapolis.Google Scholar
Kehrwald, N.M., McCoy, W.D., Thibeault, J., Burns, S.J., Oches, E.A., (2010). Paleoclimatic implications of the spatial patterns of modern and LGM European land snail shell δ18O. Quaternary Research 74, 166176.CrossRefGoogle Scholar
Kolodny, Y., Stein, M., Machlus, M., (2005). Sea–rain–lake relation in the Last Glacial East Mediterranean revealed by δ18O–δ13C Lake Lisan aragonites. Geochimica et Cosmochimica Acta 69, 40454060.CrossRefGoogle Scholar
Kornaros, G., (1999). Climatic Data of the HNMS Stations (1955–1997), Volumes A' and B'. Hellenic National Meteorological Service, Athens, Greece.(in Greek).Google Scholar
Kotsakiozi, P., Pafilis, P., Giokas, S., Valakos, E., (2012). A comparison of the physiological responses of two land snail species with different distributional ranges. Journal of Molluscan Studies 78, 2 217224.CrossRefGoogle Scholar
Kotthoff, U., Müller, U.C., Pross, J., Schmiedl, G., Lawson, I.T., van de Schootbrugge, B., Schulz, H., (2008a). Late Glacial and Holocene vegetation dynamics in the Aegean region: an integrated view based on pollen data from marine and terrestrial archives. The Holocene 18, 10191032.Google Scholar
Kotthoff, U., Pross, J., Müller, U.C., Peyron, O., Schmiedl, G., Schulz, H., Bordon, A., (2008b). Climate dynamics in the borderlands of the Aegean Sea during formation of sapropel S1 deduced from a marine pollen record. Quaternary Science Reviews 27, 832845.Google Scholar
Kotthoff, U., Koutsondendris, A., Pross, J., Schmiedl, G., Bornemann, A., Kaul, C., Marino, G., Peyron, O., Schiebel, R., (2011). Impact of Lateglacial cold events on the northern Aegean region reconstructed from marine and terrestrial proxy data. Journal of Quaternary Science 26, 1 8696.Google Scholar
Lécolle, P., (1985). The oxygen isotope composition of land snail shells as a climatic indicator: applications to hydrogeology and paleoclimatology. Chemical Geology: Isotope Geoscience Section 58, 157181.Google Scholar
Leng, M.J., Baneschi, I., Zanchetta, G., Jex, C.N., Wagner, B., Vogel, H., (2010). Late Quaternary palaeoenvironmental reconstruction from Lakes Ohrid and Prespa (Macedonia/Albania border) using stable isotopes. Biogeosciences Discussions 7, 38153853.Google Scholar
Lubell, D., Barton, N., (2011). Gastropods and humans in the late Palaeolithic and Mesolithic of the western Mediterranean basin. Quaternary International 244, 14.Google Scholar
Lykoudis, S.P., Kostopoulou, E., Argiriou, A.A., (2010). Stable isotopic signature of precipitation under various synoptic classifications. Physics and Chemistry of the Earth 35, 530535.Google Scholar
Marino, G., Rohling, E.J., Sangiorgi, F., Hayes, A., Casford, J.L., Lotter, A.F., Kucera, M., Brinkhuis, H., (2009). Early and middle Holocene in the Aegean Sea: interplay between high and low latitude climate variability. Quaternary Science Reviews 28, 32463262.CrossRefGoogle Scholar
Matiatos, I., Alexopoulus, A., (2011). Application of stable isotopes and hydrochemical analysis in groundwater aquifers of Argolis Peninsula (Greece). Isotopes in Environmental and Health Studies 1–18, 10.1080/10256016.2011.617883.Google Scholar
Mensink, P.J., Henry, H.A.L., (2011). Rain events influence short-term feeding preferences in the snail Cepaea nemoralis . Journal of Molluscan Studies 77, 241247.Google Scholar
Mumladze, L., Tarkhnishvili, D., Pokryszko, B.M., (2008). A new species of the genus Helix from the lesser Caucasus. Journal of Conchology 39, 5 483486.Google Scholar
Örstan, A., (2010). Activities of four species of land snails at low temperatures. Journal of Conchology 40, 2 245246.Google Scholar
Perlès, C., (2001). The Early Neolithic in Greece. Cambridge University Press, Cambridge.Google Scholar
Perlès, C., (2003). The Mesolithic at Franchthi: an overview of the data and problems. Galanidou, N., Perlès, C., The Greek Mesolithic. BSA series 10, British School at Athens, 7989.Google Scholar
Perlès, C., (2010). Is the Dryas the culprit? Socio-economic changes during the Final Pleistocene and Early Holocene at Franchthi Cave (Greece). Journal of the Israel Prehistoric Society 40, 113129.Google Scholar
Perlès, C., Vanhaeren, M., (2010). Black Cyclope neritea marine shell ornaments in the Upper Palaeolithic and Mesolithic of Franchthi (Argolid, Greece): arguments for an intentional heat treatment. Journal of Field Archaeology 35, 3 298309.Google Scholar
Peyron, O., Goring, S., Dormoy, I., Kotthoff, U., Pross, J., de Beaulieu, J.-L., Drescher-Schneider, R., Vannière, B., Magny, M., (2011). Holocene seasonality changes in the central Mediterranean region reconstructed from the pollen sequence of Lake Accesa (Italy) and Tenaghi Philippon (Greece). The Holocene 21, 1 131146.Google Scholar
Prior, D.J., (1985). Water regulatory behaviour in terrestrial gastropods. Biological Reviews 60, 403424.Google Scholar
Roberts, C.N., Jones, M.D., Benkaddour, A., Eastwood, W.J., Filippi, M.L., Frogley, M.R., Lamb, H.F., Leng, M.J., Reed, J.M., Stein, M., Stevens, L., Valero-Garcé, B., Zanchetta, G., (2008). Stable isotope records of Late Quaternary climate and hydrology from Mediterranean lakes: the ISOMED synthesis. Quaternary Science Reviews 27, 24262441.Google Scholar
Rohling, E.J., (1999). Environmental control on Mediterranean salinity and δ18O. Paleoceanography 14, 706715.Google Scholar
Rohling, E.J., Mayewski, P.A., Abu-Zied, R.H., Casford, J.S.L., Hayes, A., (2002). Holocene atmosphere–ocean interactions: records from Greenland and the Aegean Sea. Climate Dynamics 18, 587593.Google Scholar
Rossignol-Strick, M., (1995). Sea–land correlation of pollen records in the eastern Mediterranean for the Glacial–Interglacial transition: biostratigraphy versus radiometric time-scale. Quaternary Science Reviews 14, 893915.Google Scholar
Shackleton, J.C., (1988). Marine molluscan remains from Franchthi Cave. Excavations at Franchthi Cave, Fasc. 4. Indiana University Press, Bloomington/Indianapolis.Google Scholar
Speiser, B., (2001). Food and feeding behaviour. Barker, G.M., The Biology of Terrestrial Molluscs. CAB International, Wallingford.259288.CrossRefGoogle Scholar
Stevens, R.E., Metcalfe, S.E., Leng, M.J., Lamb, A.L., Sloane, H.J., Naranjo, E., González, S., (2012). Reconstruction of late Pleistocene climate in the Valsequillo Basin (Central Mexico) through isotopic analysis of terrestrial and freshwater snails. Palaeogeography, Palaeoclimatology, Palaeoecology 319–320, 1627.Google Scholar
Stiner, M., Munro, N., (2011). On the evolution of diet and landscape during the Upper Palaeolithic through Mesolithic at Franchthi Cave (Peloponnese, Greece). Journal of Human Evolution 60, 618636.Google Scholar
Stott, L.D., (2002). The influence of diet on the δ13C of shell carbon in the pulmonate snail Helix aspersa . Earth and Planetary Science Letters 195, 249259.Google Scholar
Triantis, K.A., Vardinoyannis, K., Mylonas, M., (2008). Biogeography, land snails and incomplete data sets: the case of three island groups in the Aegean Sea. Journal of Natural History 42, 5–8 467490.Google Scholar
Van Andel, T.H., Sutton, S.B., (1987). Landscape and people of the Franchthi region. Jacobsen, T.W., Excavation at Franchthi Cave, Greece 2. Indiana University Press, Bloomington.Google Scholar
Wedin, D.A., Tieszen, L.L., Dewey, B., Pastor, J., (1995). Carbon isotope dynamics during grass decomposition and soil organic matter formation. Ecology 76, 5 13831392.Google Scholar
Weninger, B., Jöris, O., (2008). A 14C age calibration curve for the last 60 ka: the Greenland-Hulu U/Th timescale and its impact on understanding the Middle to Upper Paleolithic transition in western Eurasia. Journal of Human Evolution 55, 5 772781.Google Scholar
Weninger, B., Jöris, O., Danzeglocke, U., (2010). CalPal-2007. Cologne Radiocarbon Calibration & Palaeoclimate Research Package. (http://www.calpal.de/, accessed 01-02-2012).Google Scholar
Yanes, Y., Delgado, A., Castillo, C., Alonso, M.R., Ibáñez, M., De la Nuez, J., Kowalewski, M., (2008). Stable isotope (δ18O, δ13C, and δD) signatures of recent terrestrial communities from a low-latitude, oceanic setting: endemic land snails, plants, rain, and carbonate sediments from the eastern Canary Islands. Chemical Geology 249, 277292.Google Scholar
Yanes, Y., Romanek, C.S., Molina, F., Cámara, J., Delgado, A., (2011). Holocene paleoenvironment (7200–4000 cal BP) of the Los Castillejos archaeological site (SE Spain) inferred from the stable isotopes of land snail shells. Quaternary International 244, 1 6775.Google Scholar
Zaarur, S., Olack, G., Affek, H.P., (2011). Paleo-environmental implication of clumped isotopes in land snail shells. Geochimica et Cosmochimica Acta 75, 68596869.Google Scholar
Zanchetta, G., Leone, G., Fallick, A.E., Bonadonna, F.P., (2005). Oxygen isotope composition of living land snail shells: data from Italy. Palaeogeography, Palaeoclimatology, Palaeoecology 223, 2033.Google Scholar