Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-24T02:34:52.191Z Has data issue: false hasContentIssue false

Cosmogenic nuclide age estimate for Laurentide Ice Sheet recession from the terminal moraine, New Jersey, USA, and constraints on latest Pleistocene ice sheet history

Published online by Cambridge University Press:  18 April 2017

Lee B. Corbett*
Affiliation:
Department of Geology and School of Natural Resources, University of Vermont, Burlington, Vermont 05405, USA
Paul R. Bierman
Affiliation:
Department of Geology and School of Natural Resources, University of Vermont, Burlington, Vermont 05405, USA
Byron D. Stone
Affiliation:
U.S. Geological Survey, East Hartford, Connecticut 06103, USA
Marc W. Caffee
Affiliation:
Center for Accelerator Mass Spectrometry, Lawrence Livermore National Laboratory, Livermore, California 94550, USA Department of Physics and Astronomy, Purdue University, West Lafayette, Indiana 47907, USA Department of Earth, Atmospheric, and Planetary Sciences, Purdue University, West Lafayette, Indiana 47907, USA
Patrick L. Larsen
Affiliation:
Department of Geology and School of Natural Resources, University of Vermont, Burlington, Vermont 05405, USA
*
*Corresponding author at: Department of Geology and School of Natural Resources, University of Vermont, Burlington, Vermont 05405, USA. E-mail address: [email protected] (L.B. Corbett).

Abstract

The time at which the Laurentide Ice Sheet reached its maximum extent and subsequently retreated from its terminal moraine in New Jersey has been constrained by bracketing radiocarbon ages on preglacial and postglacial sediments. Here, we present measurements of in situ produced 10Be and 26Al in 16 quartz-bearing samples collected from bedrock outcrops and glacial erratics just north of the terminal moraine in north-central New Jersey; as such, our ages represent a minimum limit on the timing of ice recession from the moraine. The data set includes field and laboratory replicates, as well as replication of the entire data set five years after initial measurement. We find that recession of the Laurentide Ice Sheet from the terminal moraine in New Jersey began before 25.2±2.1 ka (10Be, n=16, average, 1 standard deviation). This cosmogenic nuclide exposure age is consistent with existing limiting radiocarbon ages in the study area and cosmogenic nuclide exposure ages from the terminal moraine on Martha’s Vineyard ~300 km to the northeast. The age we propose for Laurentide Ice Sheet retreat from the New Jersey terminal position is broadly consistent with regional and global climate records of the last glacial maximum termination and records of fluvial incision.

Type
Research Article
Copyright
Copyright © University of Washington. Published by Cambridge University Press, 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Anderson, R., Davis, R., Miller, N., Stuckenrath, R., 1986. History of late- and post-glacial vegetation and disturbance around Upper South Branch Pond, northern Maine. Canadian Journal of Botany 64, 19771986.CrossRefGoogle Scholar
Anderson, R., Jacobson, G., Davis, R., Stuckenrath, R., 1992. Gould Pond, Maine: late-glacial transitions from marine to upland environments. Boreas 21, 359371.Google Scholar
Applegate, P., Urban, N., Keller, K., Lowell, T., Laabs, B., Kelly, M., Alley, R., 2012. Improved moraine age interpretations through explicit matching of geomorphic process models to cosmogenic nuclide measurements from single landforms. Quaternary Research 77, 293304.Google Scholar
Applegate, P., Urban, N., Laabs, B., Keller, K., Alley, R., 2010. Modeling the statistical distributions of cosmogenic exposure dates from moraines. Geoscientific Model Development 3, 293307.Google Scholar
Balco, G., 2011. Contributions and unrealized potential contributions of cosmogenic-nuclide exposure dating to glacier chronology, 1990–2010. Quaternary Science Reviews 30, 327.Google Scholar
Balco, G., Briner, J., Finkel, R., Rayburn, J., Ridge, J., Schaefer, J., 2009. Regional beryllium-10 production rate calibration for late-glacial northeastern North America. Quaternary Geochronology 4, 93107.Google Scholar
Balco, G., Rovey, C., 2008. An isochron method for cosmogenic-nuclide dating of buried soils and sediments. American Journal of Science 308, 10831114.Google Scholar
Balco, G., Rovey, C., 2010. Absolute chronology for major Pleistocene advances of the Laurentide Ice Sheet. Geology 38, 795798.CrossRefGoogle Scholar
Balco, G., Rovey, C., Stone, J., 2005a. The first glacial maximum in North America. Science 307, 222226.Google Scholar
Balco, G., Schaefer, J., 2006. Cosmogenic-nuclide and varve chronologies for the deglaciation of southern New England. Quaternary Geochronology 1, 1528.CrossRefGoogle Scholar
Balco, G., Stone, J., Lifton, N., Dunai, T., 2008. A complete and easily accessible means of calculating surface exposure ages or erosion rates from 10Be and 26Al measurements. Quaternary Geochronology 3, 174195.Google Scholar
Balco, G., Stone, J., Mason, J., 2005b. Numerical ages for Plio-Pleistocene glacial sediment sequences by 26Al/10Be dating of quartz in buried paleosols. Earth and Planetary Science Letters 232, 179191.CrossRefGoogle Scholar
Balco, G., Stone, J., Porter, S., Caffee, M., 2002. Cosmogenic-nuclide ages for New England coastal moraines, Martha’s Vineyard and Cape Cod, Massachusetts, USA. Quaternary Science Reviews 21, 21272135.CrossRefGoogle Scholar
Bierman, P., 1994. Using in situ produced cosmogenic isotopes to estimate rates of landscape evolution: a review from the geomorphic perspective. Journal of Geophysical Research 99, 1388513896.CrossRefGoogle Scholar
Bierman, P., 2015. The incision history of the Great Falls of the Potomac River—the Kirk Bryan field trip. In: Brezinski, D.K., Halka, J.P., Ortt, R.A., Jr. (Eds.), Tripping from the Fall Line: Field Excursions for the GSA Annual Meeting, Baltimore, 2015. Field Guide 40. Geological Society of America, Boulder, CO, pp. 1–10.CrossRefGoogle Scholar
Bierman, P., Caffee, M., 2002. Cosmogenic exposure and erosion history of Australian bedrock landforms. Geological Society of America Bulletin 114, 787803.Google Scholar
Bierman, P., Davis, P., Corbett, L., Lifton, N., 2015. Cold-based, Laurentide ice covered New England’s highest summits during the Last Glacial Maximum. Geology 43, 10591062.Google Scholar
Bierman, P., Marsella, K., Patterson, C., Davis, P., Caffee, M., 1999. Mid-Pleistocene cosmogenic minimum-age limits for pre-Wisconsinan glacial surfaces in southwestern Minnesota and southern Baffin Island: a multiple nuclide approach. Geomorphology 27, 2539.CrossRefGoogle Scholar
Bierman, P., Shakun, J., Corbett, L., Zimmerman, S., Rood, D., 2016. Marine-sediment 10Be and 26Al records of a persistent and dynamic East Greenland Ice Sheet since the Pliocene. Nature 540, 256260.Google Scholar
Bond, G., Showers, W., Cheseby, M., Lotti, R., Almasi, P., deMenocal, P., Priore, P., Cullen, H., Hajdas, I., Bonani, G., 1997. A pervasive millennial-scale cycle in North Atlantic Holocene and glacial climates. Science 278, 12571266.Google Scholar
Briner, J., Bini, A., Anderson, R., 2009. Rapid early Holocene retreat of a Laurentide outlet glacier through an Arctic fjord. Nature Geoscience 2, 496499.CrossRefGoogle Scholar
Briner, J., Goehring, B., Mangerud, J., Svendsen, J., 2016. The deep accumulation of 10Be at Utsira, southwestern Norway: implications for cosmogenic nuclide exposure dating in peripheral ice sheet landscapes. Geophysical Research Letters 43, 91219129.CrossRefGoogle Scholar
Briner, J., Gosse, J., Bierman, P., 2006a. Applications of cosmogenic nuclides to Laurentide Ice Sheet history and dynamics. Geological Society of America Special Papers 415, 2941.Google Scholar
Briner, J., Lifton, N., Miller, G., Refsnider, K., Anderson, R., Finkel, R., 2014. Using in situ cosmogenic 10Be, 14C, and 26Al to decipher the history of polythermal ice sheets on Baffin Island, Arctic Canada. Quaternary Geochronology 19, 413.Google Scholar
Briner, J., Miller, G., Davis, P., Bierman, P., Caffee, M., 2003. Last Glacial Maximum ice sheet dynamics in Arctic Canada inferred from young erratics perched on ancient tors. Quaternary Science Reviews 22, 437444.Google Scholar
Briner, J., Miller, G., Davis, P., Finkel, R., 2005. Cosmogenic exposure dating in arctic glacial landscapes: implications for the glacial history of northeastern Baffin Island, Arctic Canada. Canadian Journal of Earth Sciences 42, 6784.Google Scholar
Briner, J., Miller, G., Davis, P., Finkel, R., 2006b. Cosmogenic radionuclides from fjord landscapes support differential erosion by overriding ice sheets. Geological Society of America Bulletin 118, 406420.Google Scholar
Bromley, G., Hall, B., Thompson, W., Kaplan, M., Hgarcia, J., Schaefer, J., 2015. Late glacial fluctuations of the Laurentide Ice Sheet in the White Mountains of Maine and New Hampshire. U.S.A. Quaternary Research 83, 522530.Google Scholar
Carlson, A., Clark, P., Raisbeck, G., Brook, E., 2007. Rapid Holocene deglaciation of the Labrador sector of the Laurentide Ice Sheet. Journal of Climate 20, 51265133.Google Scholar
Clague, J., James, T., 2002. History and isostatic effects of the last ice sheet in southern British Columbia. Quaternary Science Reviews 21, 7187.CrossRefGoogle Scholar
Clark, D., Bierman, P., Larsen, P., 1995. Improving in situ cosmogenic chronometers. Quaternary Research 44, 367377.Google Scholar
Clark, P., Brook, E., Raisbeck, G., Yiou, F., Clark, J., 2003. Cosmogenic 10Be ages of the Saglek Moraines, Torngat Mountains, Labrador. Geology 31, 617620.Google Scholar
Clark, P., Dyke, A., Shakun, J., Carlson, A., Clark, J., Wohlfarth, B., Mitrovica, J., Hostetler, S., McCabe, A., 2009. The Last Glacial Maximum. Science 325, 710714.Google Scholar
Clark, P., Mix, A., 2002. Ice sheets and sea level of the Last Glacial Maximum. Quaternary Science Reviews 21, 17.Google Scholar
Colgan, P., Bierman, P., Mickelson, D., Caffee, M., 2002. Variation in glacial erosion near the southern margin of the Laurentide Ice Sheet, south-central Wisconsin, USA: implications for cosmogenic dating of glacial terrains. Geological Society of America Bulletin 114, 15811591.2.0.CO;2>CrossRefGoogle Scholar
Connally, G.G., Sirkin, L.A., 1973. Wisconsinan history of the Hudson-Champlain Lobe. Geological Society of America Memoir 136, 4769.CrossRefGoogle Scholar
Corbett, L., Bierman, P., Davis, P., 2016a. Glacial history and landscape evolution of southern Cumberland Peninsula, Baffin Island, Canada, constrained by cosmogenic 10Be and 26Al. Geological Society of America Bulletin 128, 11731192.CrossRefGoogle Scholar
Corbett, L., Bierman, P., Neumann, T., Graly, J., 2016b. Stories under the ice: investigating glacial history and process with cosmogenic nuclides in icebound cobbles. Geological Society of America Abstracts with Programs, 48.Google Scholar
Corbett, L., Bierman, P., Rood, D., 2016c. Constraining multi-stage exposure-burial scenarios for boulders preserved beneath cold-based glacial ice in Thule, northwest Greenland. Earth and Planetary Science Letters 440, 147157.Google Scholar
Cotter, J., Ridge, J., Evenson, E., Sevon, W., Sirkin, L., Stuckenrath, R., 1986. The Wisconsinan history of the Great Valley, Pennsylvania and New Jersey, and the age of the “Terminal Moraine.” Bulletin of the New York State Museum 455, 2249.Google Scholar
Dansgaard, W., Johnsen, S.J., Moller, J., Langway, C., 1969. One thousand centuries of climate record from Camp Century on the Greenland Ice Sheet. Science 166, 377381.Google Scholar
Davis, P., Bierman, P., Corbett, L., Finkel, R., 2015. Cosmogenic exposure age evidence for rapid Laurentide deglaciation of the Katahdin area, west-central Maine, USA, 16 to 15 ka. Quaternary Science Reviews 116, 95105.Google Scholar
Davis, P.T., Bierman, P.R., Marsella, K.A., Caffee, M.W., Southon, J.R., 1999. Cosmogenic analysis of glacial terrains in the eastern Canadian Arctic: a test for inherited nuclides and the effectiveness of glacial erosion. Annals of Glaciology 28, 181188.Google Scholar
Davis, P.T., Davis, R.B., 1980. Interpretation of minimum-limiting radiocarbon ages for deglaciation of Mt. Katahdin area. Maine. Geology 8, 396400.Google Scholar
DeJong, B., Bierman, P., Newell, W., Rittenour, T., Mahan, S., Balco, G., Rood, D., 2015. Pleistocene relative sea levels in the Chesapeake Bay region and their implications for the next century. GSA Today 25, 410.Google Scholar
Dorion, C.C., 1997. An Updated High Resolution Chronology of Deglaciation and Accompanying Marine Transgression in Maine. Master’s thesis, University of Maine, Orono.Google Scholar
Drake, A., Volkert, R., Monteverde, D., Herman, G., Houghton, H., Parker, R., Dalton, R., 1996. Bedrock Geologic Map of Northern New Jersey. Miscellaneous Geologic Investigations Map I-2540-A. US Geological Survey, Reston, VA.Google Scholar
Dyke, A., 2004. An outline of North American deglaciation with emphasis on central and northern Canada. Quaternary Glaciations: Extent and Chronology 2, 373424.Google Scholar
Engelhart, S., Horton, B., Douglas, B., Peltier, W., Törnqvist, T., 2009. Spatial variability of late Holocene and 20th century sea-level rise along the Atlantic coast of the United States. Geology 37, 11151118.Google Scholar
Evenson, E., Cotter, J., Ridge, J., Sevon, W., Sirkin, L., Stuckenrath, R., 1983. The mode and chronology of deglaciation of the Great Valley, northwestern New Jersey. Geological Society of America Abstracts with Programs 15, 133.Google Scholar
Fabel, D., Harbor, J., 1999. The use of in-situ produced cosmogenic radionuclides in glaciology and glacial geomorphology. Annals of Glaciology 28, 103110.Google Scholar
Fullerton, D., 1986. Stratigraphy and correlation of glacial deposits from Indiana to New York and New Jersey. Quaternary Science Reviews 5, 2337.Google Scholar
Goehring, B., Kelly, M., Schaefer, J., Finkel, R., Lowell, T., 2010. Dating of raised marine and lacustrine deposits in east Greenland using beryllium-10 depth profiles and implications for estimates of subglacial erosion. Journal of Quaternary Science 25, 865874.Google Scholar
Gosse, J., Evenson, E., Klein, J., Lawn, B., Middleton, R., 1995a. Precise cosmogenic 10Be measurements in western North America: support for a global Younger Dryas cooling event. Geology 23, 877880.Google Scholar
Gosse, J., Grant, D., Klein, J., Klassen, R., Evenson, E., Lawn, B., Middleton, R., 1993. Significance of altitudinal weathering zones in Atlantic Canada, inferred from in situ produced cosmogenic radionuclides. Geological Society of America Abstracts with Programs 25, A394.Google Scholar
Gosse, J., Grant, D., Klein, J., Lawn, B., 1995b. Cosmogenic 10Be and 26Al constraints on weathering zone genesis, ice cap basal conditions, and Long Range Mountain (Newfoundland) glacial history. Programme, Abstracts, Field Guides, CANQUA CGRG Joint Meeting, St. John’s Canada, CA19.Google Scholar
Gosse, J., Phillips, F., 2001. Terrestrial in situ cosmogenic nuclides: theory and application. Quaternary Science Reviews 20, 14751560.Google Scholar
Grimm, E., Maher, L., Nelson, D., 2009. The magnitude of error in conventional bulk-sediment radiocarbon ages from central North America. Quaternary Research 72, 301308.Google Scholar
Harmon, K., 1968. Late Pleistocene Forest Succession in Northern New Jersey. PhD dissertation. Rutgers University, New Brunswick, NJ.Google Scholar
Heisinger, B., Lal, D., Jull, A., Kubik, P., Ivy-Ochs, S., Neumaier, S., Knie, K., Lazarev, V., Nolte, E., 2002. Production of selected cosmogenic radionuclides by muons: 1. Fast muons. Earth and Planetary Science Letters 200, 345355.Google Scholar
Heyman, J., Applegate, P., Blomdin, R., Gribenski, N., Harbor, J., Stroeven, A., 2016. Boulder height – exposure age relationships from a global glacial 10Be compilation. Quaternary Geochronology 34, 111.Google Scholar
Heyman, J., Stroeven, A., Harbor, J., Caffee, M., 2011. Too young or too old: evaluating cosmogenic exposure dating based on an analysis of compiled boulder exposure ages. Earth and Planetary Science Letters 302, 7180.CrossRefGoogle Scholar
Hughes, A.L.C., Gyllencreutz, R., Lohne, Ø.S., Mangerud, J., Svendsen, J.I., 2016. The last Eurasian ice sheets – a chronological database and time-slice reconstruction, DATED-1. Boreas 45, 145.Google Scholar
Kaplan, M., Miller, G., 2003. Early Holocene delevelling and deglaciation of the Cumberland Sound region, Baffin Island, Arctic Canada. Geological Society of America Bulletin 115, 445462.Google Scholar
Kaplan, M., Miller, G., Steig, E., 2001. Low-gradient outlet glaciers (ice streams?) drained the Laurentide ice sheet. Geology 29, 343346.2.0.CO;2>CrossRefGoogle Scholar
Koester, A., Shakun, J.D., Bierman, P.R., Davis, P.T., Corbett, L.B., Braun, D., Zimmerman, S.R., 2017. Rapid thinning of the Laurentide Ice Sheet in coastal Maine, USA, during late Heinrich Stadial 1. Quaternary Science Reviews, DOI 10.1016/j.quascirev.2017.03.005.Google Scholar
Kohl, C., Nishiizumi, K., 1992. Chemical isolation of quartz for measurement of in-situ-produced cosmogenic nuclides. Geochimica et Cosmochimica Acta 56, 35833587.Google Scholar
Lal, D., 1988. In situ-produced cosmogenic isotopes in terrestrial rocks. Annual Review of Earth and Planetary Sciences 16, 355388.Google Scholar
Lal, D., 1991. Cosmic ray labeling of erosion surfaces: in situ nuclide production rates and erosion models. Earth and Planetary Science Letters 104, 424439.CrossRefGoogle Scholar
Lambeck, K., Rouby, H., Purcell, A., Sun, Y., Sambridge, M., 2014. Sea level and global ice volumes from the Last Glacial Maximum to the Holocene. Proceedings of the National Academy of Sciences of the United States of America 111, 1529615303.Google Scholar
Larsen, P., 1996. In-Situ Production Rates of Cosmogenic 10Be and 26Al over the Past 21,500 Years Determined from the Terminal Moraine of the Laurentide Ice Sheet, North-Central New Jersey, Geology. Master’s thesis, University of Vermont, Burlington.Google Scholar
Litwin, R., Smoot, J., Pavich, M., Markewich, H., Brook, G., Durika, N., 2013. 100,000-year-long terrestrial record of millennial-scale linkage between eastern North American mid-latitude paleovegetation shifts and Greenland ice-core oxygen isotope trends. Quaternary Research 80, 291315.Google Scholar
Long, A., 2009. Back to the future: Greenland’s contribution to sea-level change. GSA Today 19, 410.Google Scholar
Margreth, A., Gosse, J., Dyke, A., 2016. Quantification of subaerial and episodic subglacial erosion rates on high latitude upland plateaus: Cumberland Peninsula, Baffin Island, Arctic Canada. Quaternary Science Reviews 133, 108129.Google Scholar
Marquette, G., Gray, J., Gosse, J., Courchesne, F., Stockli, L., Macpherson, G., Finkel, R., 2004. Felsenmeer persistence under non-erosive ice in the Torngat and Kaumajet mountains, Quebec and Labrador, as determined by soil weathering and cosmogenic nuclide exposure dating. Canadian Journal of Earth Sciences 41, 1938.Google Scholar
Marsella, K., Bierman, P., Davis, P., Caffee, M., 2000. Cosmogenic 10Be and 26Al ages for the last glacial maximum, eastern Baffin Island, Arctic Canada. Geological Society of America Bulletin 112, 12961312.2.0.CO;2>CrossRefGoogle Scholar
Melles, M., Brigham-Grette, J., Glushkova, O., Minyuk, P., Nowaczyk, N., Hubberten, H., 2007. Sedimentary geochemistry of core PG1351 from Lake El’gygytgyn—a sensitive record of climate variability in the East Siberian Arctic during the past three glacial–interglacial cycles. Journal of Paleolimnology 37, 89104.CrossRefGoogle Scholar
Miller, G., Briner, J., Lifton, N., Finkel, R., 2006. Limited ice-sheet erosion and complex exposure histories derived from in situ cosmogenic 10Be, 26Al, and 14C on Baffin Island, Arctic Canada. Quaternary Geochronology 1, 7485.Google Scholar
Nelson, A., Bierman, P., Shakun, J., Rood, D., 2014. Using in situ cosmogenic 10Be to identify the source of sediment leaving Greenland. Earth Surface Processes and Landforms 39, 10871100.Google Scholar
Nishiizumi, K., Imamura, M., Caffee, M., Southon, J., Finkel, R., McAninch, J., 2007. Absolute calibration of 10Be AMS standards. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 258, 403413.Google Scholar
Nishiizumi, K., Kohl, C., Arnold, J., Dorn, R., Klein, I., Fink, D., Middleton, R., Lal, D., 1993. Role of in situ cosmogenic nuclides 10Be and 26Al in the study of diverse geomorphic processes. Earth Surface Processes and Landforms 18, 407425.Google Scholar
Nishiizumi, K., Winterer, E.L., Kohl, C.P., Klein, J., Middleton, R., Lal, D., Arnold, J.R., 1989. Cosmic ray production rates of 10Be and 26Al in quartz from glacially polished rocks. Journal of Geophysical Research 94, 1790717915.Google Scholar
Parent, M., Lefebvre, R., Rivard, C., Lavoie, M., Guilbault, J., 2015. Mid-Wisconsinan fluvial and marine sediments in the central St-Lawrence lowlands- implications for glacial and deglacial events in the Appalachian uplands. Geological Society of America Abstracts with Programs 47, 82.Google Scholar
Peteet, D.M., Beh, M., Orr, C., Kurdyla, D., Nichols, J., Guilderson, T., 2012. Delayed deglaciation or extreme Arctic conditions 21-16 cal. kyr at southeastern Laurentide Ice Sheet margin? Geophysical Research Letters 39, L11706.Google Scholar
Phillips, F., Argento, D., Balco, G., Caffee, M., Clem, J., Dunai, T., Finkel, R., et al., 2016. The CRONUS-Earth project: a synthesis. Quaternary Geochronology 31, 119154.CrossRefGoogle Scholar
Phillips, F., Zreda, M., Smith, S., Elmore, D., Kubik, P., Sharma, P., 1990. Cosmogenic chlorine-36 chronology for glacial deposits at Bloody Canyon, eastern Sierra Nevada. Science 248, 15291532.CrossRefGoogle ScholarPubMed
Rayburn, J., DeSimone, D., Staley, A., Mahan, S., Stone, B., 2015. Age of an ice dammed lake on the lee side of the Catskill Mountains, New York, and rough estimates for the rate of ice advance to the last glacial maximum. Geological Society of America Abstracts with Programs 47, 713.Google Scholar
Reimer, P., Bard, E., Bayliss, A., Beck, J., Blackwell, P., Ramsey, C., Buck, C., Cheng, H., Edwards, R., Friedrich, M., Grootes, P., Guilderson, T., Haflidason, H., Hajdas, I., Hatte, C., Heaton, T., Hoffman, D., Hogg, A., Hughen, K., Kaiser, K., Kromer, B., Manning, S., Niu, M., Reimer, R., Richards, D., Scott, E., Southon, J., Staff, R., Turney, C., van der Plicht, J., 2013. IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP: Radiocarbon 55, 18691887.Google Scholar
Reusser, L., Bierman, P., Pavich, M., Larsen, J., Finkel, R., 2006. An episode of rapid bedrock channel incision during the last glacial cycle, measured with 10Be. American Journal of Science 306, 69102.Google Scholar
Ridge, J., Balco, G., Bayless, R., Beck, C., Carter, L., Cean, J., Voytek, E., Wei, J., 2012. The new North American varve chronology: A precise record of southeastern Laurentide Ice Sheet deglaciation and climate 18.2–12.5 kyr BP, and correlations with Greenland Ice Core records. American Journal of Science 312, 685722.Google Scholar
Salisbury, R.D., 1902. The Glacial Geology of New Jersey. Final Report. New Jersey Geological Survey, Trenton, NJ.Google Scholar
Schildgen, T., Phillips, W., Purves, R., 2005. Simulation of snow shielding corrections for cosmogenic nuclide surface exposure studies. Geomorphology 64, 6785.Google Scholar
Sirkin, L., Stuckenrath, R., 1980. The Port Washingtonian warm interval in the northern Atlantic coastal plain. Geological Society of America Bulletin 91, 332336.Google Scholar
Staiger, J., Gosse, J., Johnson, J., Fastook, J., Gray, J., Stockli, D., Stockli, L., Finkel, R., 2005. Quaternary relief generation by polythermal glacier ice. Earth Surface Processes and Landforms 30, 11451159.Google Scholar
Stanford, S., 1993. Late Wisconsinan glacial geology of the New Jersey highlands. Northeastern Geology 15, 210223.Google Scholar
Stanford, S., Witte, R., 2006. Surficial Geology of New Jersey. New Jersey Department of Environmental Protection/New Jersey Geological Survey, Trenton, NJ.Google Scholar
Steig, E.J., Wolfe, A.P., Miller, G.H., 1998. Wisconsinan refugia and the glacial history of eastern Baffin Island, Arctic Canada: coupled evidence from cosmogenic isotopes and lake sediments. Geology 26, 835838.Google Scholar
Stone, B., Borns, H., 1986. Pleistocene glacial and interglacial stratigraphy of New England, Long Island, and adjacent Georges Bank and Gulf of Maine. Quaternary Science Reviews 5, 3952.Google Scholar
Stone, B., Reimer, G., Pardi, R., 1989. Revised stratigraphy and history of glacial Lake Passaic, New Jersey. Geological Society of America Abstracts with Programs 21, 2.Google Scholar
Stone, B., Stanford, S., Witte, R., 1995. Surficial Geologic Map of the Northern Sheet, New Jersey, U.S. U.S. Geological Survey Map OF-95-543-B, scale 1:100,000. U.S. Geological Survey, Reston, VA.Google Scholar
Stone, B., Stanford, S., Witte, R., 2002. Surficial Geologic Map of Northern New Jersey. U.S. Geological Survey Miscellaneous Investigations Map I-2540-C. U.S. Geological Survey, Reston, VA.Google Scholar
Stone, J., 2000. Air pressure and cosmogenic isotope production. Journal of Geophysical Research 105, 2375323759.Google Scholar
Stone, J., Schafer, J., London, E., DiGiacomo-Cohen, M., Thompson, W., 2005. Quaternary Geologic Map of Connecticut and Long Island Sound Basin. U.S. Geological Survey Miscellaneous Investigations Map I-2784. U.S. Geological Survey, Reston, VA.Google Scholar
Stuiver, M., Grootes, P., 2000. GISP2 oxygen isotope ratios. Quaternary Research 53, 277284.Google Scholar
Ullman, D., Carlson, A., Hostetler, S., Clark, P., Cuzzone, J., Milne, G., Winsor, K., Caffee, M., 2016. Final Laurentide ice-sheet deglaciation and Holocene climate-sea level change. Quaternary Science Reviews 152, 4959.Google Scholar
Ullman, D., Carlson, A., LeGrande, A., Anslow, F., Moore, A., Caffee, M., Syverson, K., Licciardi, J., 2015. Southern Laurentide ice-sheet retreat synchronous with rising boreal summer insolation. Geology 43, 2326.Google Scholar
Supplementary material: PDF

Corbett supplementary material

Corbett supplementary material

Download Corbett supplementary material(PDF)
PDF 8 MB