Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-24T04:22:38.994Z Has data issue: false hasContentIssue false

Co-occurrence of mylodontid sloths and insights on their potential distributions during the late Pleistocene

Published online by Cambridge University Press:  20 January 2017

Luciano Varela*
Affiliation:
Sección Paleontología, Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400 Montevideo, Uruguay
Richard A. Fariña
Affiliation:
Sección Paleontología, Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400 Montevideo, Uruguay
*
Corresponding author. E-mail address:[email protected] (L. Varela).

Abstract

Species distribution models (SDMs) for the last interglacial (LIG), the global last glacial maximum (LGM) and the Holocene climatic optimum (HCO) were generated for three extinct South American Pleistocene mylodontid giant sloths, Glossotherium robustum, Lestodon armatus and Mylodon darwinii. They are recorded co-occurring in some localities including Arroyo del Vizcaíno site (AdV) in Uruguay. Co-occurrence records were studied based on the overlap of their generated areas of potential distributions, and compared with the available biome reconstructions of South America during the LGM to analyze their distribution patterns, ecological requirements and possible interactions between them. Our results suggest that these sloths could have co-existed mainly in the Chaco-Paraná Basin and the plains in the Río de la Plata area. Areas of high suitability were observed for submerged parts of the continental shelf that were exposed during the LGM showing an overall increase in potential habitat compared to the LIG and HCO. This suggests that there was a drastic reduction in total available areas of preferred habitat at the end of the Pleistocene. The co-occurrence of these sloths at the AdV site suggests the presence of vegetation indicative of mainly open, cold to temperate habitats but with mixed patches typical of humid climates.

Type
Original Articles
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aguilera, O., (2006). Tesoros Paleontológicos de Venezuela: El Cuaternario del Nordeste del Estado Falcón.. Editorial Arte, Caracas.Google Scholar
Aires, A.S.S., Lopes, R.P., (2012). Representativity of Quaternary mammals from the Southern Brazilian continental shelf.. Revista Brasileira de Paleontologia 15, 5766.CrossRefGoogle Scholar
Alberdi, M.T., Menegaz, A.N., Prado, J.L., (1987). Formas terminales de Hippidion (Mammalia, Perissodactyla) de los yacimientos del Pleistoceno tardío-Holoceno de la Patagonia (Argentina y Chile).. Estudios Geológicos 43, 107115.CrossRefGoogle Scholar
Alberdi, M.T., Menégaz, A.N., Prado, J.L., Tonni, E.P., (1989). La fauna local Quequén Salado-Indio Rico (Pleistoceno tardío) de la provincia de Buenos Aires. Argentina. Aspectos paleoambientales y bioestratigráficos.. Ameghiniana 25, 225236.Google Scholar
Alberdi, M.T., Miotti, L., Prado, J.L., (2001). Hippidion saldiasi Roth, 1899 (Equidae, Perissodactyla), at the Piedra Museo Site (Santa Cruz, Argentina): Its implication for the regional economy and environmental reconstruction.. Journal of Archaeological Science 28, 411419.CrossRefGoogle Scholar
Alvarenga, H., Jones, W., Rinderknecht, A., (2010). The youngest record of phorusrhacid birds (Aves, Phorusrhacidae) from the late Pleistocene of Uruguay.. Neues Jahrbuch für Geologie und Paläontologie-Abhandlungen 256, 229234.CrossRefGoogle Scholar
Anhuf, D., Ledru, M.P., Behling, H., (2006). Paleo-environmental change in Amazonian and African rainforest during the LGM.. Palaeogeography, Palaeoclimatology, Palaeoecology 239, 510527.CrossRefGoogle Scholar
Baker, P.A., Seltzer, G.O., Fritz, S.C., Dunbar, R.B., Grove, M.J., Tapia, P.M., Cross, S.L., Rowe, D.H., Broda, J.P., (2001). The history of South American tropical precipitation for the past 25,000 years.. Science 291, 640643.CrossRefGoogle ScholarPubMed
Bargo, M.S., De Iuliis, G., (1999). Hypsodonty and bilophodonty in Megatherium americanum (Xenarthra, Tardigrada): a paradox. Abstracts of the Congress Neotropical Evolution of the Cenozoic.. 11.Google Scholar
Bargo, M.S., Vizcaíno, S.F., (2008). Paleobiology of Pleistocene ground sloths (Xenarthra, Tardigrada): biomechanics, morphogeometry and ecomorphology applied to the masticatory apparatus.. Ameghiniana 45, 175196.Google Scholar
Bargo, M.S., Menegaz, A.M., Prado, J.L., Salemne, M.C., Tambussi, C.P., Tonni, E.P., (1986). Mamíferos y bioestratigrafía. Una nueva fauna local de la Unidad Mamífero Lujanense (Pleistoceno tardío) de la provincia de Buenos Aires.. Ameghiniana 23, 229232.Google Scholar
Bargo, M.S., Vizcaíno, S.F., Archuby, F.M., Blanco, R.E., (2000). Limb bone proportions, strength and digging in some Lujanian (late Pleistocene–early Holocene) mylodontid ground sloths (Mammalia, Xenarthra).. Journal of Vertebrate Paleontology 20, 601610.CrossRefGoogle Scholar
Bargo, M.S., De Iuliis, G., Vizcaíno, S.F., (2006a). Hypsodonty in Pleistocene ground sloths.. Acta Palaeontologica Polonica 51, 5361.Google Scholar
Bargo, M.S., Toledo, N., Vizcaíno, S.F., (2006b). Muzzle of South American Pleistocene ground sloths (Xenarthra, Tardigrada).. Journal of Morphology 267, 248263.CrossRefGoogle ScholarPubMed
Barnosky, A.D., Lindsey, E.L., (2010). Timing of Quaternary megafaunal extinction in South America in relation to human arrival and climate change.. Quaternary International 217, 1029.CrossRefGoogle Scholar
Blair, M.E., Sterling, E.J., Dusch, M., Raxworthy, C.J., Pearson, R.G., (2013). Ecological divergence and speciation between lemur (Eulemur) sister species in Madagascar.. Journal of Evolutionary Biology 26, 17901801.CrossRefGoogle ScholarPubMed
Borrero, L.A., Martin, F.M., (2008). A reinterpretation of the Pleistocene human and faunal association at Las Buitreras Cave, Santa Cruz, Argentina.. Quaternary Science Reviews 27, 25092515.CrossRefGoogle Scholar
Boule, M., Thevenin, A., (1920). Mammifères fossiles de Tarija.. Imprimerie nationale, Paris.Google Scholar
Braconnot, P., Otto-Bliesner, B., Harrison, S., Joussaume, S., Peterchmitt, J.-Y., Abe-Ouchi, A., Crucifix, M., Driesschaert, E., Fichefet, Th., Hewitt, C.D., Kageyama, M., Kitoh, A., Laîné, A., Loutre, M.-F., Marti, O., Merkel, U., Ramstein, G., Valdes, P., Weber, S.L., Yu, Y., Zhao, Y., (2007). Results of PMIP2 coupled simulations of the Mid-Holocene and Last Glacial Maximum — part 1: experiments and large-scale features.. Climate of the Past 3, 261277..CrossRefGoogle Scholar
Brandoni, D., Ferrero, B.S., Brunetto, E., (2010). Mylodon darwini Owen (Xenarthra, Mylodontinae) from the Late Pleistocene of Mesopotamia, Argentina, with remarks on individual variability, paleobiology, paleobiogeography, and paleoenvironment.. Journal of Vertebrate Paleontology 30, 15471558.CrossRefGoogle Scholar
Brunetto, E., Ferrero, B.S., Noriega, J.I., (2015). Late Pleistocene lithostratigraphy and sequences in the southwestern Mesopotamia (Argentina): evidences of the last interglacial stage.. Journal of South American Earth Sciences 58, 111128.Google Scholar
Cardillo, M., Mace, G.M., Jones, K.E., Bielby, J., Bininda-Emonds, O.R., Sechrest, W., David, C., Orme, L., Purvis, A., (2005). Multiple causes of high extinction risk in large mammal species.. Science 309, 12391241.CrossRefGoogle ScholarPubMed
Cartajena, I., López, P., Carabias, D., Morales, C., Vargas, G., Ortega, C., (2013). First evidence of an underwater Final Pleistocene terrestrial extinct faunal bone assemblage from Central Chile (South America): taxonomic and taphonomic analyses.. Quaternary International 305, 4555..CrossRefGoogle Scholar
Christiansen, P., Fariña, R.A., ("a, 2003). Mass estimation of two fossil ground sloths (Xenarthra; Mylodontidae).. Senckenbergiana Biologica 83, 95101.Google Scholar
Cione, A.L., Tonni, E.P., Dondas, A., (2005). A mastodon (Mammalia, Gomphotheriidae) from the Argentinian Continental Shelf.. Neues Jahrbüch für Geologie und Paläontologie, Monashefte 10, 614630.CrossRefGoogle Scholar
Clark, P.U., Dyke, A.S., Shakun, J.D., Carlson, A.E., Clark, J., Wohlfarth, B., Mitrovica, J.X., Hostetler, S.W., McCabe, A.M., (2009). The last glacial maximum.. Science 325, 710714.CrossRefGoogle ScholarPubMed
Coltorti, M., Abbazzi, L., Ferretti, M.P., Iacumin, P., Ríos, F.P., Pellegrini, M., Pieruccini, P., Rustioni, M., Tito, G., Rook, L., (2007). Last Glacial mammals in South America: a new scenario from the Tarija Basin (Bolivia).. Naturwissenschaften 94, 288299.CrossRefGoogle ScholarPubMed
Czerwonogora, A., Fariña, R.A., ("a, 2013). How many Pleistocene species of Lestodon (Mammalia, Xenarthra, Tardigrada)?.. Journal of Systematic Palaeontology 11, 251263.CrossRefGoogle Scholar
Czerwonogora, A., Fernicola, J.C., Fariña, R.A., (2002). Megamamífero submarino no siempre es ballena: fósiles lujanenses en las playas de Uruguay.. Resúmenes 1er Congreso Latinoamericano de Paleontología de Vertebrados 3031.Google Scholar
Czerwonogora, A., Fariña, R.A., Tonni, E.P., (2011). Diet and isotopes of Late Pleistocene ground sloths: first results for Lestodon and Glossotherium (Xenarthra, Tardigrada).. Neues Jahrbuch für Geologie und Paläontologie-Abhandlungen 262, 257266.CrossRefGoogle Scholar
Dahl-Jensen, D., Albert, M.R., Aldahan, A., Azuma, N., Balslev-Clausen, D., Baumgartner, M., Berggren, A.M., Bigler, M., Binder, T., Blunier, T.(2013). Eemian interglacial reconstructed from a Greenland folded ice core.. Nature 493, 489494.Google Scholar
Dantas, M.A.T., Xavier, M.C.T., de Melo França, L., Cozzuol, M.A., de Souza Ribeiro, A., Figueiredo, A.M.G., Kinoshita, A., Baffa, O., (2013). A review of the time scale and potential geographic distribution of Notiomastodon platensis (Ameghino, 1888) in the late Pleistocene of South America.. Quaternary International 317, 7379.CrossRefGoogle Scholar
De Iuliis, G., Bargo, M.S., Vizcaíno, S.F., (2000). Skull morphology variation and mastication in the fossil giant armadillos Pampatherium spp.; with remarks on related genera (Mammalia: Xenarthra: Pampatheriidae).. Journal of Vertebrate Paleontology 20, 743754.CrossRefGoogle Scholar
de Melo França, L., de Asevedo, L., Dantas, M.A.T., Bocchiglieri, A., Avilla, L.S., Lopes, R.P., da Silva, J.L.L., ("a et al., 2015). Review of feeding ecology data of Late Pleistocene mammalian herbivores from South America and discussions on niche differentiation.. Earth-Science Reviews 140, 158165.CrossRefGoogle Scholar
de Vivo, M., Carmignotto, A.P., (2004). Holocene vegetation change and the mammal faunas of South America and Africa.. Journal of Biogeography 31, 943957.CrossRefGoogle Scholar
Deschamps, C.M., (2013). Late Cenozoic mammal bio-chronostratigraphy in southwestern Buenos Aires province, Argentina.. Ameghiniana 42, 733750.Google Scholar
Esteban, G.I., (1988). Nuevo Mylodontinae (Edentata, Tardigrada) del Cuaternario del noroeste Argentino (Las Estancias, Catamarca).. Ameghiniana 25, 115122.Google Scholar
Esteban, G., (1996). Revisión de los Mylodontinae cuaternarios (Edentata, Tardigrada) de Argentina, Bolivia y Uruguay.. Sistemática, Filogenia, Paleobiología, Paleozoogeografía y Paleoecología Facultad de Ciencias Naturales e Instituto Miguel Lillo, (Doctoral dissertation. 235 pp.).Google Scholar
Fariña, R.A., ("a, 1996). Trophic relationships among Lujanian mammals.. Evolutionary Theory 11, 125134.Google Scholar
Fariña, R.A., ("a, 2015). Bone surface modifications, reasonable certainty and human antiquity in the Americas: the case of the arroyo del Vizcaíno site.. American Antiquity 80, 193200.CrossRefGoogle Scholar
Fariña, R.A., Blanco, R.E., ("a and Blanco, 1996). Megatherium, the stabber. Proceedings of the Royal Society of London.. Series B: Biological Sciences 263, 17251729.Google Scholar
Fariña, R.A., Castilla, R., (2007). Earliest evidence for human-megafauna interaction in the Americas.. Corona, M.E., Arroyo-Cabrales, J. Human and Faunal Relationships Reviewed: An Archaeozoological Approach.. Archaeopress, Oxford.3133.(ii + 121 pp.).Google Scholar
Fariña, R.A., Vizcaíno, S.F., Bargo, M.S., (1998). Body mass estimations in Lujanian (late Pleistocene–early Holocene of South America) mammal megafauna.. Mastozoología Neotropical 5, 87108.Google Scholar
Fariña, R.A., Vizcaíno, S.F., De Iuliis, G., (2013). Megafauna. Giant Beasts of Pleistocene South America.. Indiana University Press, Bloomington.978-0-253-00230-3(416 pp).Google Scholar
Fariña, R.A., Tambusso, P.S., Varela, L., Czerwonogora, A., Di Giacomo, M., Musso, M., Bracco, R., Gascue, A., (2014a). Arroyo del Vizcaíno, Uruguay: a fossil-rich 30-ka-old megafaunal locality with cut-marked bones.. Proceedings of the Royal Society B 281, 20132211.CrossRefGoogle Scholar
Fariña, R.A., Czerwonogora, A., Di Giacomo, M., (2014b). Splendid oddness: revisiting the curious trophic relationships of South American Pleistocene mammals and their abundance.. Anais da Academia Brasileira de Ciências 86, 311331.CrossRefGoogle ScholarPubMed
Fernández, M.H., and Vrba, E.S. (2005). Body size, biomic specialization and range size of African large mammals.. Journal of Biogeography 32, 12431256.CrossRefGoogle Scholar
Ferrero, B.S., (2009). Mamíferos del Cuaternario de la província de Entre Ríos, Argentina: Diversidad y evolución.. Aspectos bioestratigráficos y paleozoogeográficos de una fauna particular Universidad Nacional de la Plata, (Doctoral dissertation. 425 pp.).Google Scholar
Franklin, J., (2010). Mapping Species Distributions: Spatial Inference and Prediction.. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
Franklin, J., Davis, F.W., Ikegami, M., Syphard, A.D., Flint, L.E., Flint, A.L., Hannah, L., (2013). Modeling plant species distributions under future climates: how fine scale do climate projections need to be?.. Global Change Biology 19, 473483.CrossRefGoogle ScholarPubMed
Franklin, J., Potts, A.J., Fisher, E.C., Cowling, R.M., Marean, C.W., (2015). Paleodistribution modeling in archaeology and paleoanthropology.. Quaternary Science Reviews 110, 114.CrossRefGoogle Scholar
Fucks, E., Aguirre, M., Deschamps, C.M., (2005). Late Quaternary continental and marine sediments of northeastern Buenos Aires province (Argentina): fossil content and paleoenvironmental interpretation.. Journal of South American Earth Sciences 20, 4556.CrossRefGoogle Scholar
Gallo, V., Avilla, L.S., Pereira, R.C., Absolon, B.A., (2013). Distributional patterns of herbivore megamammals during the Late Pleistocene of South America.. Anais Academia Brasileira de Ciências 85, 533546..CrossRefGoogle ScholarPubMed
Gaston, K.J., Blackburn, T.M., (1996). Range size-body size relationships: evidence of scale dependence.. Oikos 479485.CrossRefGoogle Scholar
Gaudin, T.J., (2004). Phylogenetic relationships among sloths (Mammalia, Xenarthra, Tardigrada): the craniodental evidence.. Zoological Journal of the Linnean Society 140, 255305.CrossRefGoogle Scholar
Ghilardi, A.M., Fernandes, M.A., Bichuette, M.E., (2011). Megafauna from the Late Pleistocene–Holocene deposits of the Upper Ribeira karst area, southeast Brazil.. Quaternary International 245, 369378.CrossRefGoogle Scholar
Guisan, A., Thuiller, W., (2005). Predicting species distribution: offering more than simple habitat models.. Ecology Letters 8, 9931009.CrossRefGoogle ScholarPubMed
Guisan, A., Zimmermann, N.E., (2000). Predictive habitat distribution models in ecology.. Ecological Modelling 135, 147186.CrossRefGoogle Scholar
Gutiérrez, E.E., Boria, R.A., Anderson, R.P., ("rrez et al., 2014). Can biotic interactions cause allopatry? Niche models, competition, and distributions of South American mouse opossums.. Ecography 37, 741753.CrossRefGoogle Scholar
Hijmans, R.J., Cameron, S.E., Parra, J.L., Jones, P.G., Jarvis, A., (2005). Very high resolution interpolated climate surfaces for global land areas.. International Journal of Climatology 25, 19651978.CrossRefGoogle Scholar
Hoffstetter, R., (1954). Les gravigrades (Edentés Xénarthres) des cavernes de Lagoa Santa (Minas Gerais, Brésil).. Annales de sciences naturelles, Zoologie 16, 741764.Google Scholar
Hoffstetter, R., (1978). Une faune de Mammifères pléistocènes au Paraguay.. Comptes Rendus Sommaires des Sciences de la Societé Géologique de France 1, 3233.Google Scholar
Hubbe, A., Hubbe, M., Karmann, I., Cruz, F.W., Neves, W.A., (2013). Insights into Holocene megafauna survival and extinction in southeastern Brazil from new AMS 14C dates.. Quaternary Research 79, 152157.CrossRefGoogle Scholar
Lessa, E.P., Fariña, R.A., ("a, 1996). Reassessment of extinction patterns among the late Pleistocene mammals of South America.. Palaeontology 39, 651662.Google Scholar
Lima-Ribeiro, M.S., Diniz-Filho, J.A.F., (2012). Modelando a distribuição geográfica das espécies no passado: uma abordagem promissora em paleoecologia.. Revista Brasileira de Paleontologia 15, 371385.CrossRefGoogle Scholar
Lima-Ribeiro, M.S., Varela, S., Nogués-Bravo, D., Diniz-Filho, J.A.F., (2012). Potential suitable areas of giant ground sloths dropped before its extinction in South America: the evidences from bioclimatic envelope modeling.. Natureza & Conservação 10, 145151.CrossRefGoogle Scholar
Long, A., Martin, P.S., Lagiglia, H.A., (1998). Ground sloth extinction and human occupation at Gruta del Indio, Argentina.. Radiocarbon 40, 693700.CrossRefGoogle Scholar
Lopes, R.P., Buchmann, F.S., (2011). Pleistocene mammals from the southern Brazilian continental shelf.. Journal of South American Earth Sciences 31, 1727.CrossRefGoogle Scholar
López, P., Cartajena, I., Carabias, D., Morales, C., Letelier, D., Flores, V., ("pez et al., 2015). Terrestrial and maritime taphonomy: differential effects on spatial distribution of a Late Pleistocene continental drowned faunal bone assemblage from the Pacific coast of Chile.. Archaeological and Anthropological Sciences 1–14, .Google Scholar
Marshall, G.L., Hoffstetter, R., Pascual, R., Reig, O.A., Bombin, M., Mones, A., (1984). Mammals and stratigraphy: geochronology of the continental mammal-bearing Quaternary of South America.. Palaeovertebrata-Memoire Extraordinaire 1–76, .Google Scholar
Martin, F., San Román, M., Morello, F., Todisco, D., Prevosti, F.J., Borrero, L.A., (2013). Land of the ground sloths: recent research at Cueva Chica, Ultima Esperanza, Chile.. Quaternary International 305, 5666.CrossRefGoogle Scholar
Martínez, G., Gutiérrez, M.A., Tonni, E.P., (2013). Paleoenvironments and faunal extinctions: analysis of thearchaeological assemblages at the Paso Otero locality (Argentina) during the Late Pleistocene–Early Holocene.. Quaternary International 299, 5363.CrossRefGoogle Scholar
Mayle, F.E., (2006). The Late Quaternary biogeographical history of South American seasonally dry tropical forests: insights from palaeo-ecological data.. Neotropical Savannas and Seasonally Dry Forests: Plant Diversity, Biogeography, and Conservation, Neotropical Savannas and Seasonally Dry Forests: Plant Diversity, Biogeography, and Conservation (Systematics Association Special Volume Series) CRC press, 395416.CrossRefGoogle Scholar
McAfee, R.K., (2009). Reassessment of the cranial characters of Glossotherium and Paramylodon (Mammalia: Xenarthra: Mylodontidae).. Zoological Journal of the Linnean Society 155, 885903.CrossRefGoogle Scholar
McDonald, H.G., Dundas, R.G., Chatters, J.C., (2013). Taxonomy, paleoecology and taphonomy of ground sloths (Xenarthra) from the Fairmead Landfill locality (Pleistocene: Irvingtonian) of Madera County, California.. Quaternary Research 79, 215227.CrossRefGoogle Scholar
Miño-Boilini, Á.R., Zurita, A.E., Bond, M., Francia, A., Soibelzon, E., ("o-Boilini et al., 2012). Sobre la presencia de un supuesto Haplodontheriinae (Mammalia, Toxodontidae) en el Pleistoceno tardío de la provincia de Corrientes (Argentina).. Revista mexicana de biodiversidad 83, 407412.Google Scholar
Moore, D.M., (1978). Post‐glacial vegetation in the South Patagonian territory of the giant ground sloth, Mylodon.. Botanical Journal of the Linnean Society 77, 177202.CrossRefGoogle Scholar
Moreno, F., Mercerat, A., (1891). Catalogue des Oiseaux fossiles de la République Argentine conservés au Musée de la Plata.. Anales del Museo de la Plata 1, 171.Google Scholar
Mumladze, L., (2014). Sympatry without co-occurrence: exploring the pattern of distribution of two Helix species in Georgia using an ecological niche modelling approach.. Journal of Molluscan Studies 80, 249255.CrossRefGoogle Scholar
Nami, H.G., Nakamura, T., (1995). Cronología radiocarbónica con AMS sobre muestras de hueso procedentes del sitio Cueva del Medio (Última Esperanza, Chile).. Anales del Instituto de la Patagonia 23, 125134.Google Scholar
Nascimento, E.R., (2008). Os Xenarthra Pilosa (Megatheriidae), Notoungulata (Toxodontidae) e Proboscidea (Gomphotheriidae) da formação Rio Madeira.. Pleistoceno Superior, estado de Rondônia, Brasil Universidade Federal do Rio Grande do Sul, (Master thesis).Google Scholar
Olifiers, N., Vieira, M.V., Grelle, C.E.V., (2004). Geographic range and body size in Neotropical marsupials.. Global Ecology and Biogeography 13, 439444.CrossRefGoogle Scholar
Paula Couto, C., (1944). Sobre a presença dos gêneros Hippidion e Toxodon Owen no Pleistoceno do Rio Grande do Sul.. Boletim do Museu Nacional (Nova Série) 2, 112.Google Scholar
Paula Couto, C., (1980). Fossil Pleistocene to Sub-recent mammals from northeasthern Brazil. 1. Edentata Megalonychidae.. Anais da Academia Brasileira de Ciências 52, 143151.Google Scholar
Perea, D., (1998). Xenarthra fósiles del Uruguay: distribución estratigráfica, caracterización estratigráfica y sistemática de algunos Tardigrada.. (Doctoral dissertation).Google Scholar
Pereira, J.C., Lopes, R.P., Kerber, L., (2012). New remains of late Pleistocene mammals from the Chuí Creek, Southern Brazil.. Revista Brasileira de Paleontologia 15, 228239.CrossRefGoogle Scholar
Phillips, S.J., Dudik, M., (2008). Modeling of species distributions with MaxEnt: new extensions and a comprehensive evaluation.. Ecography 31, 161 .CrossRefGoogle Scholar
Phillips, S.J., Anderson, R.P., Schapire, R.R., (2006). Maximum entropy modeling of species geographic distributions.. Ecological Modelling 190, 231259.CrossRefGoogle Scholar
Pitana, V.G., Esteban, G.I., Ribeiro, A.M., Cartelle, C., (2013). Cranial and dental studies of Glossotherium robustum (Owen, 1842)(Xenarthra: Pilosa: Mylodontidae) from the Pleistocene of southern Brazil.. Alcheringa: An Australasian Journal of Palaeontology 37, 147162.CrossRefGoogle Scholar
Politis, G.G., Messineo, P.G., (2008). The Campo Laborde site: new evidence for the Holocene survival of Pleistocene megafauna in the Argentine Pampas.. Quaternary International 191, 98114.CrossRefGoogle Scholar
Prevosti, F.J., Martin, F.M., (2013). Paleoecology of the mammalian predator guild of Southern Patagonia during the latest Pleistocene: ecomorphology, stable isotopes, and taphonomy.. Quaternary International 305, 7484.CrossRefGoogle Scholar
Prevosti, F.J., Soibelzon, L.H., Prieto, A., San Román, M., Morello, F., (2003). The southernmost bear: Pararctotherium (Carnivora, Ursidae, Tremarctinae) in the latest pleistocene of southern patagonia, chile.. Journal of Vertebrate Paleontology 23, 709712.CrossRefGoogle Scholar
Pujos, F., Salas, R., (2004). A systematic reassessment and paleogeographic review of fossil Xenarthra from Peru.. Bulletin de l'Institut français d'études andines 33, 331377.CrossRefGoogle Scholar
Quantum GIS Development Team, , (2014). Quantum GIS Geographic Information System.. Open Source Geospatial Foundation Project(http://qgis.osgeo.org).Google Scholar
Raxworthy, C.J., Pearson, R.G., Zimkus, B.M., Reddy, S., Deo, A.J., Nussbaum, R.A., Ingram, C.M., (2008). Continental speciation in the tropics: contrasting biogeographic patterns of divergence in the Uroplatus leaf‐tailed gecko radiation of Madagascar.. Journal of Zoology 275, 423440.CrossRefGoogle Scholar
Ray, N., Adams, J.M., (2001). A GIS-based vegetation map of the world at the Last Glacial Maximum (25,000–15,000 BP).. Internet Archaeology 11(http://intarch.ac.uk/journal/issue11/rayadams_toc.html).CrossRefGoogle Scholar
Rolim, J.L., (1974). Calcário secundário com restos fósseis de mamíferos pleistocênicos em Pernambuco.. Anais Academia Brasileira de Ciências 46, 417422.(3/4).Google Scholar
Rowlett, R., Mandeville, E.Z., (1978). An El Jobo Mastodon Kill at Taima-Taima, Venezuela.. Science 200, 1275.Google Scholar
Salles, L.O., Cartelle, C., Guedes, P.G., Boggiani, P.C., Janoo, A., Russo, C.A.M., (2006). Quaternary mammals from Serra da Bodoquena, Mato Grosso do Sul, Brazil.. Boletim do Museu Nacional 521, 112.Google Scholar
Sánchez-Saldías, A., Fariña, R.A., (2014). Palaeogeographic reconstruction of Minchin palaeolake system, South America: the influence of astronomical forcing.. Geoscience Frontiers 5, 249259.CrossRefGoogle Scholar
Sandom, C., Faurby, S., Sandel, B., Svenning, J.C., (2014). Global late Quaternary megafauna extinctions linked to humans, not climate change.. Proceedings of the Royal Society of London B: Biological Sciences 281, 20133254.Google Scholar
Schoener, T.W., (1968). Anolis lizards of Bimini: resource partitioning in a complex fauna.. Ecology 49, 704726.CrossRefGoogle Scholar
Scillato-Yané, G.J., Carlini, A.A., Vizcaíno, S.F., Ortiz Jaureguizar, E., (1995). Los xenarthros.. Alberdi, M.T., Leone, G., Tonni, E.P. Evolución biológica y climática de la región pampeana durante los últimos cinco millones de años.. Un ensayo de correlación con el Mediterráneo occidental 183209.Google Scholar
Seguel, R., Jackson, D.G., Méndez, C.A., López, P., (2010). Extinct fauna, palimpsest and scavenging in the semiarid North Coast of Chile.. Current Research in the Pleistocene 27, 2831.Google Scholar
Soibelzon, E., Zurita, A.E., Gasparini, G.M., Soibelzon, L.H., (2008). Análisis faunístico de vertebrados de las “toscas del Río de la Plata” (Buenos Aires, Argentina): un yacimiento paleontológico en desaparición.. Revista del Museo Argentino de Ciencias Naturales 10, 291308.CrossRefGoogle Scholar
Steele, J., Politis, G., (2009). AMS 14 C dating of early human occupation of southern South America.. Journal of Archaeological Science 36, 419429.CrossRefGoogle Scholar
Tauber, A.A., Di Ronco, J., (2003). Un esqueleto articulado de Mylodon sp. (Tardigrada, Mylodontidae) del Pleistoceno tardío de Córdoba, Argentina.. Reunión Anual de Comunicaciones de la Asociación Paleontológica Argentina (Santa Rosa, La Pampa) 40, Ameghiniana, 108A.Google Scholar
Tomiati, C., Abbazzi, L., (2002). Deer fauna from Pleistocene and Holocene localities of Ecuador (South America).. Geobios 35, 631645.CrossRefGoogle Scholar
Tonni, E.P., Prado, J.L., Menegaz, A.N., Salemme, M.C., (1985). La unidad mamifero (fauna) Lujanense. Proyección de la estratigrafía mamaliana al cuaternario de la región Pampeana.. Ameghiniana 22, 255261.Google Scholar
Torres, R., Jayat, J.P., Pacheco, S., (2013). Modelling potential impacts of climate change on the bioclimatic envelope and conservation of the Maned Wolf (Chrysocyon brachyurus).. Mammalian Biology-Zeitschrift für Säugetierkunde 78, 4149.CrossRefGoogle Scholar
Ubilla, M., Alberdi, M.T., (1990). Hippidion sp. (Mammalia, Perissodactyla. Equidae) en sedimentos del Pleistoceno superior del Uruguay (Edad Mamífero Lujanense).. Estudios Geológicos 46, 453464.CrossRefGoogle Scholar
Van der Vaart, A.W., (1998). Asymptotic Statistics.. Cambridge Univ. Press, Cambridge, U.K..Google Scholar
Varela, S., Lobo, J.M., Hortal, J., (2011). Using species distribution models in paleobiogeography: a matter of data, predictors and concepts.. Palaeogeography, Palaeoclimatology, Palaeoecology 310, 451463.CrossRefGoogle Scholar
Vialou, A.V., (2003). Santa Elina rockshelter, Brazil: evidence of the coexistence of man and Glossotherium.. Miotti, L., Salemme, M., Flegenheimer, N. Where the South Winds Blow: Ancient Evidence of Paleo South Americans.. 2128.Google Scholar
Vizcaíno, S.F., (2000). Vegetation partitioning among Lujanian (late Pleistocene—early Holocene) armored herbivores in the pampean region.. Current Research in the Pleistocene 17, 135137.Google Scholar
Vizcaíno, S.F., Zárate, M., Bargo, M.S., Dondas, A., (2001). Pleistocene caves in the Mar del Plata area (Buenos Aires Province, Argentina) and their probable builders.. Acta Palaeontologica Polonica 46, 157169.Google Scholar
Vizcaíno, S.F., Cassini, G.H., Fernicola, J.C., Bargo, M.S., (2011). Evaluating habitats and feeding habits through ecomorphological features in Glyptodonts (Mammalia, Xenarthra).. Ameghiniana 48, 305319.CrossRefGoogle Scholar
Waltari, E., Hijmans, R.J., Peterson, A.T., Nyári, Á.S., Perkins, S.L., Guralnick, R.P., (2007). Locating Pleistocene refugia: comparing phylogeographic and ecological niche model predictions.. PLoS One 2, e563.CrossRefGoogle ScholarPubMed
Warren, D.L., Glor, R.E., Turelli, M., (2008). Environmental niche equivalency versus conservatism: quantitative approaches to niche evolution.. Evolution 62, 28682883.CrossRefGoogle ScholarPubMed
Warren, D.L., Glor, R.E., Turelli, M., (2010). ENMTools: a toolbox for comparative studies of environmental niche models.. Ecography 33, 607611.CrossRefGoogle Scholar
Zurita, A.E., Gasparini, G.M., Soibelzon, E., (2005). Una localidad con mamíferos pleistocenos en el centro-oeste de la Provincia de Buenos Aires, Argentina.. Comunicaciones Científicas y Tecnológicas, Universidad Nacional del Nordeste, Resúmenes B-008(4 pp.).Google Scholar
Zurita, A.E., Carlini, A.A., Scillato-Yane, G.J., Tonni, E.P., (2010). The extinct mammals of the Quaternary of Chaco Province, Argentina, and its relationship with those of the east of the pampean area and Chile.. Andean Geology 31, 6588.Google Scholar