Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-26T06:25:10.343Z Has data issue: false hasContentIssue false

Comparing fire-history interpretations based on area, number and estimated volume of macroscopic charcoal in lake sediments

Published online by Cambridge University Press:  20 January 2017

Adam A. Ali*
Affiliation:
Chaire industrielle CRSNG-UQAT-UQAM en aménagement forestier durable, Université du Québec en Abitibi-Témiscamingue, 445 boul. de l'Université, Rouyn-Noranda (QC), Canada J9X 5E4
Philip E. Higuera
Affiliation:
Department of Earth Sciences, 200 Traphagen Hall, Montana State University Bozeman, MT 59717, USA Department of Forest Resources, University of Idaho, Moscow, ID 83844-1133, USA
Yves Bergeron
Affiliation:
Chaire industrielle CRSNG-UQAT-UQAM en aménagement forestier durable, Université du Québec en Abitibi-Témiscamingue, 445 boul. de l'Université, Rouyn-Noranda (QC), Canada J9X 5E4
Christopher Carcaillet
Affiliation:
Centre for Bio-Archeology and Ecology (UMR5059 CNRS), Université Montpellier 2, Institut de Botanique, 163 rue Auguste Broussonet, 34090, Montpellier, France Paleoenvironments and Chronoecology (PALECO-EPHE), Institut de Botanique, 163 rue Auguste Broussonet, 34090, Montpellier, France
*
Corresponding author. Present-day address: Centre for Bio-Archeology and Ecology (UMR5059 CNRS), Université Montpellier 2, Institut de Botanique, 163 rue Auguste Broussonet, 34090, Montpellier, France. E-mail address:[email protected] (A.A. Ali).

Abstract

Sedimentary charcoal particles from lakes are commonly used to investigate fire history. Fire-history reconstructions are based on measuring the surface area or counting the number of charcoal fragments in adjacent samples. Recently, the volume of charcoal particles was advised as a more accurate method for quantifying past charcoal production. Large charcoal datasets, used to synthesize global fire history, include these different types of charcoal measurements and implicitly assume that they provide comparable fire-history information. However, no study has demonstrated that this assumption is valid. Here we compare fire-frequency reconstructions based on measurements of charcoal area and number, and estimates of charcoal volume from two lake sediment records from the eastern Canadian boreal forest. Results indicate that the three proxies provide comparable fire-history interpretations when using a locally defined threshold to identify fire events.

Type
Short Paper
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ali, A.A., Carcaillet, C., and Bergeron, Y. Long-term fire frequency variability in the eastern Canadian boreal forest: the influences of climate vs local factors. Global Change Biology 15, (2009). 12301241.CrossRefGoogle Scholar
Carcaillet, C. Charred particles analyses. Elias, S.A. Encyclopedia of Quaternary Science. (2007). Elsevier, Amsterdam. 15821593.Google Scholar
Carcaillet, C., Almquist, H., Asnong, H., Bradshaw, R.H.B., Carrión, J.S., Gaillard, M.J., Gajewski, K., Haas, J.N., Haberle, S.G., Hadorn, P., Muller, S.D., Richard, P.J.H., Richoz, I., Rösch, M., Sánchez Goñi, M.F., von Stedingk, H., Stevenson, A.C., Talon, B., Tardy, C., Tinner, W., Tryterud, E., Wick, L., and Willis, K.J. Holocene biomass burning and global dynamics of the carbon cycle. Chemosphere 49, (2002). 845863.CrossRefGoogle ScholarPubMed
Carcaillet, C., Bergeron, Y., Richard, P.J.H., Fréchette, B., Gauthier, S., and Prairie, Y.T. Change of fire frequency in the eastern Canadian boreal forest during the Holocene: does vegetation composition or climate trigger the fire regime?. Journal of Ecology 89, (2001). 930946.CrossRefGoogle Scholar
Carcaillet, C., Bouvier, M., Fréchette, B., Larouche, A.C., and Richard, P.J.H. Comparison of pollen-slide and sieving methods in lacustrine charcoal analyses for local and regional fire history. The Holocene 11, (2001). 467476.CrossRefGoogle Scholar
Clark, J.S., Stocks, B.J., and Richard, P.J.H. Climate implications of biomass burning since the 19th century in eastern North America. Global Change Biology 2, (1996). 433442.CrossRefGoogle Scholar
Clark, J.S Stratigraphic charcoal analysis on petrographic thin sections: application to fire history in Northern Minnesota. Quaternary Research 30, (1988). 8191.CrossRefGoogle Scholar
Clark, J.S., and Royall, P.D. Particle-size evidence for source areas of charcoal accumulation in Late Holocene sediments of eastern North American lakes. Quaternary Research 43, (1995). 8089.CrossRefGoogle Scholar
Gavin, D.G., Hu, F.S., Lertzman, K., and Corbett, P. Weak climatic control of stand-scale fire history during the Late Holocene. Ecology 87, (2006). 17221732.CrossRefGoogle ScholarPubMed
Higuera, P.E., Peters, M.E., Brubaker, L.B., and Gavin, D.G. Understanding the origin and analysis of sediment-charcoal records with a simulation model. Quaternary Science Reviews 26, (2007). 17901809.CrossRefGoogle Scholar
Higuera, P.E., Brubaker, L.B., Anderson, P.M., Brown, T.A., Kennedy, A.T., Hu, F.S., (2008). Frequent fires in ancient shrub tundra: implications of paleorecords for arctic environmental change. PLoS ONE 3, e0001744.CrossRefGoogle ScholarPubMed
Higuera, P.E., Brubaker, L.B., Anderson, P.M., Hu, F.S., and Brown, T.A. Vegetation mediated the impacts of postglacial climate change on fire regimes in the southcentral Brooks Range, Alaska. Ecological Monographs 79, (2009). 201219.CrossRefGoogle Scholar
Long, C.J., Whitlock, C., Bartlein, P.J., and Millspaugh, S.H. A 9000-year fire history from Oregon Cost Range, based on a high resolution charcoal study. Canadian Journal of Forest Research 28, (1998). 774787.CrossRefGoogle Scholar
Lynch, J.A., Hollis, J.L., and Hu, F.S. Climatic and landscape controls of the boreal forest fire regime: Holocene records from Alaska. Journal of Ecology 92, (2004). 477489.CrossRefGoogle Scholar
Lynch, J.A., Clark, J.S., and Stocks, B. Charcoal production, dispersal, and deposition from the Fort Providence experimental fire: interpreting fire regimes from charcoal records in boreal forests. Canadian Journal of Forest Research 34, (2004). 16421656.CrossRefGoogle Scholar
Marlon, J.R., Bartlein, P.J., Carcaillet, C., Gavin, D.G., Harrison, S.P., Higuera, P.E., Joos, F., Power, M.J., and Prentice, I.C. Climate and human influences on global biomass burning over the past two millennia. Nature Geoscience 1, (2008). 697702.CrossRefGoogle Scholar
Marlon, J.R., Bartlein, P.J., Walsh, M.K., Harrison, S.P., Brown, K.J., Edwards, M.E., Higuera, P.E., Power, M.J., Anderson, R.S., Briles, C., Brunelle, A., Carcaillet, C., Daniels, M., Hu, F.S., Lavoie, M., Long, C., Minckley, T., Richard, P.J.H., Scott, A.C., Shafer, D.S., Tinner, W., Umbanhowar Jr., C.E., and Whitlock, C. Wildfire responses to abrupt climate change in North America. Proceedings of the National Academy of Sciences 106, 8 (2009). 25192524.CrossRefGoogle ScholarPubMed
Pitkänen, A, and Huttunen, P. A 1300-year forest-fire history at a site in eastern Finland based on charcoal and pollen records in laminated lake sediment. The Holocene 9, (1999). 311320.CrossRefGoogle Scholar
Pitkänen, A., Turunen, J., and Tolonen, K. The role of fire in the carbon dynamics of mire, eastern Finland. The Holocene 9, (1999). 453462.CrossRefGoogle Scholar
Power, M.J., Marlon, J., Ortiz, N., Bartlein, P.J., Harrison, S.P., Mayle, F.E., Ballouche, A., Bradshaw, R., Carcaillet, C., Cordova, C., Mooney, S., Moreno, P., Prentice, I.C., Thonicke, K., Tinner, W., Whitlock, C., Zhang, Y., Zhao, Y., Ali, A.A., Anderson, R.S., Beer, R., Behling, H., Briles, C., Brown, K.J., Brunelle, A., Bush, M., Camill, P., Chu, G.Q., Clark, J., Colombaroli, D., Connor, S., Daniels, M., Daniau, A.-L., Dodson, J., Doughty, E., Edwards, M.E., Fisinger, W., Foster, D., Frechette, J., Gaillard, M.-J., Gil-Romera, G., Gavin, D.G., Gobet, E., Haberle, S., Hallett, D.J., Higuera, P., Hope, G., Horn, S., Inoue, J., Kaltenreider, P., Kennedy, L., Kong, Z.C., Larsen, C., Long, C., Lynch, J., Lynch, B., McGlone, M., Meeks, S., Mensing, S., Meyer, G., Minckley, T., Nelson, D., New, J., Newnham, R., Mohr, J., Noti, R., Oswald, W., Pierce, J., Richard, P.J.H., Rowe, C., Sanchez Goñi, M.F., Shuman, B.J., Takahara, H., Toney, J., Turney, C., Umbanhower, C., Vandergoes, M., Vanniere, B., Vescovi, E., Walsh, M., Wang, X., Williams, N., Wilmshurst, J., and Zhang, J.H. Changes in fire regimes since the Last Glacial Maximum: an assessment based on a global synthesis and analysis of charcoal data. Climate Dynamics 30, (2008). 887907.CrossRefGoogle Scholar
Reimer, P.J., Baillie, M.G.L., Bard, E., Bayliss, A., Beck, J.W., Bertrand, C.J.H., Blackwell, P.G., Buck, C.E., Burr, G.S., Cutler, K.B., Damon, P.E., Edwards, R.L., Fairbanks, R.G., Friedrich, M., Guilderson, T.P., Hogg, A.G., Hughen, K.A., Kromer, B., McCormac, G., Manning, S., Ramsey, C.B., Reimer, R.W., Remmele, S., Southon, J.R., Stuiver, M., Talamo, S., Taylor, F.W., van der Plicht, J., and Weyhenmeyer, C.E. INTCAL04 terrestrial radiocarbon age calibration, 0–26 cal kyr BP. Radiocarbon 46, (2004). 10291058.Google Scholar
Stuiver, M., and Reimer, P.J. Extended 14C data base and revised CALIB 3.0 14C age calibration program. Radiocarbon 35, (1993). 215230.CrossRefGoogle Scholar
Tinner, W., and Hu, F.S. Size parameters, size-class distribution and area-number relationship of microscopic charcoal: relevance for fire reconstruction. The Holocene 13, (2003). 291296.CrossRefGoogle Scholar
Tinner, W., Hofstetter, S., Zeugin, F., Conedera, M., Wohlgemuth, T., Zimmermann, L., and Zweifel, R. Long-distance transport of macroscopic charcoal by an intensive crown fire in the Swiss Alps—implications for fire history reconstruction. The Holocene 16, (2006). 287292.CrossRefGoogle Scholar
Umbanhowar, C.E., and McGrath, M.J. Experimental production and analysis of microscopic charcoal from wood, leaves and grasses. The Holocene 8, (1998). 341346.CrossRefGoogle Scholar
Weng, C. An improved method for quantifying sedimentary charcoal via a volume proxy. The Holocene 1, (2005). 298301.CrossRefGoogle Scholar
Wick, L., and Möhl, A. The mid-Holocene extinction of silver fir (Abies alba) in the Southern Alps: a consequence of forest fire? Palaeobotanical records and forest simulations. Vegetation History and Archaeobotany 15, (2006). 435444.CrossRefGoogle Scholar