Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-28T03:34:06.441Z Has data issue: false hasContentIssue false

Comments on Brigham-Grette et al. (2003), "Chlorine-36 and 14C chronology support a limited last glacial maximum across central Chukotka, northeastern siberia, and no Beringian ice sheet," and Gualtieri et al. (2003)

Published online by Cambridge University Press:  20 January 2017

Mikhail G. Grosswald
Affiliation:
Institute of Geography, Russian Academy of Sciences, 29 Staromonetny Street, 181017 Moscow, Russia
Terence J. Hughes*
Affiliation:
Climate Change Institute, Department of Earth Sciences, University of Maine, Orono, ME 04469–57790, USA
*
*Corresponding author. Fax: +1-207-581-1203. E-mail address:[email protected]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Letter to the Editor
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bintanja, R., van der Wal, R.S.W., Erlemans, J., (2002). Global ice volume variations through the last glacial cycle simulated by a 2-D ice-dynamical model. Quaternary International 95/96, 1123.CrossRefGoogle Scholar
Bonnichsen, R., Turnmire, K.L., (1998). Ice-Age People of North America. Oregon State Univ. Press, Corvallis, OR.Google Scholar
Brigham-Grette, J., Hopkins, D.M., Ivanov, V.F., Basilyan, A., Benson, S.L., Heiser, P.A., Pushkar, V., (2001). Last interglacial (isotope stage 5), glacial and sea level history of coastal Chukotka Peninsula and St. Lawrence Island, western Beringia. Quaternary Science Reviews 20, 419436.Google Scholar
Brigham-Grette, J., Gualtieri, L.M., Glushkova, O.Y., Hamilton, T.D., Mostoller, D., Kotov, A., (2003). Chlorine-36 and 14C chronology support a limited last glacial maximum across central Chukotka, northeasten Siberia, and no Beringian ice sheet. Quaternary Research 59, 386398.Google Scholar
Budd, W.F., Courts, B., Warner, R.C., (1998). Modelling of the Antarctic and the Northern Hemisphere ice sheet shanges with global climate through the glacial cycle. Annals of Glaciology 27, 153160.CrossRefGoogle Scholar
Creager, J.S., McManus, D.A., (1967). Geology of the floor of Bering and Chukchi Seas—American studies. Hopkins, D.M., The Bering Land Bridge Stanford University Press, Stanford, CA., 731.Google Scholar
Denton, G.H., Hughes, T.J., (2000). Reconstruction of the Ross ice drainage system, Antarctica, at the last glacial maximum. Geografiska Annaler 82A, 203 143166.Google Scholar
Denton, G.H., Marchant, D.R., (2000). The geologic basis for a reconstruction of a grounded ice sheet in McMurdo Sound, Antarctica, at the last glacial maximum. Geografiska Annaler 82A, 2–3 167211.Google Scholar
Denton, G.H., Hughes, T.J., (2002). Reconstructing the Antarctic Ice Sheet at the Last Glacial Maximum. Quaternary Sciences Reviews 21, 193202.Google Scholar
Glushkova, O.Y., (1984). Morphology and paleogeography of the Late Pleistocene glaciations in the Northeastern USSR. Pleistocene Glaciations in Eastern Asia Magadan 2842.[In Russian].Google Scholar
Glushkova, O.Y., (2001). Geomorphological correlation of Late Pleistocene glacial complexes of Western and Eastern Beringia. Quaternary Science Reviews 20, 405417.CrossRefGoogle Scholar
Greve, R., Wyrwoll, K.-H., Eisenhauer, A., (1999). Deglaciation of the Northern Hemisphere at the onset of the Eemian and Holocene. Annals of Glaciology 28, 18.Google Scholar
Grosswald, M.G., (1990). An ice sheet on the East Siberian shelf in the Late Pleistocene. Polar Geography and Geology 14, 294304.Google Scholar
Grosswald, M.G., (1999). Cataclysmic Megafloods in Eurasia and the Polar Ice Sheets. Scientific World Moscow. [In Russian].Google Scholar
Grosswald, M.G., (2003). The Arctic center of Quaternary ice and flood spreading, a deductive model. Russian Journal of Earth Sciences 5, 3 203217.Google Scholar
Grosswald, M.G., Hughes, T.J., (1995). Paleoglaciology's grand unsolved problem. Journal of Glaciology 41, 138 313332.CrossRefGoogle Scholar
Grosswald, M.G., Hughes, T.J., (1998). Evidence for Quaternary glaciation of the Sea of Okhotsk. IPPCCE Newsletter 11, 325.Google Scholar
Grosswald, M.G., Hughes, T.J., (1999). The case for an ice shelf in the Pleistocene Arctic Ocean. Polar Geography 23, 1 2354.Google Scholar
Grosswald, M.G., Hughes, T.J., (2002). The Russian component of an Arctic ice sheet during the Last Glacial Maximum. Quaternary Science Reviews 21, 121146.Google Scholar
Grosswald, M.G., Karlén, W., Shishorina, Z., Bodin, A., (1992). Glacial landforms and the age of deglaciation in the Tiksi area, East Siberia. Geografiska Annaler A 74, 295304.Google Scholar
Grosswald, M.G., Hughes, T.J., Lasca, N.P., (1999). Oriented lake-and-ridge assemblages of the Arctic coastal plains: glacial landforms modified by thermokarst and solifluction. Polar Record 35, 194 215230.CrossRefGoogle Scholar
Gualtieri, L., Vartanyan, S., Brigham-Grette, J., Anderson, P.M., (2003). Pleistocene raised marine deposits on Wrangel Island, northeast Siberia and implications for the presence of an East Siberian ice sheet. Quaternary Research 59, 399410.Google Scholar
Hall, B.L., Denton, G.H., (2000). Radiocarbon chronology of Ross Sea drift, eastern Taylor Valley, Antarctica: Evidence for a grounded ice sheet in the Ross Sea at the last glacial maximum. Geografiska Annaler A 82, 2–3 305336.Google Scholar
Heiser, P., Roush, J.J., (2001). Pleistocene glaciations in Chukotka, Russia: moraine mapping using satellite synthetic aperture radar (SAR) imagery. Quaternary Science Reviews 20, 393404.Google Scholar
Hopkins, D.M., (1967). Introduction. Hopkins, D.M., The Bering Land Bridge Stanford University Press, Stanford, CA., 16.Google Scholar
Hopkins, D.M., (1972). The paleogeography and climatic history of Beringia during Late Cenozoic time. Inter-Nord 12, 121150.Google Scholar
Hughes, T.J., (1986). The marine ice transgression hypothesis. Geografiska Annaler A 69, 2 237250.Google Scholar
Hughes, T.J., (1995). Workshop on questions of Arctic Ice Sheet development, Grosswald's vision, and implication for paleoclimate interpretations. Proceedings of the International Conference on Arctic Margins, Russian Academy of Sciences (Far East Branch) 107112.Google Scholar
Hughes, T., (1998). Ice Sheets. University Press, New York, Oxford.Google Scholar
Hughes, B.A., Hughes, T.J., (1994). Transgressions: Rethinking Beringian glaciations. Palaeogeography, Palaeoclimatology, Palaeoecology 110, 3–4 275294.CrossRefGoogle Scholar
Hughes, T., Bonnichsen, R., Fastook, J., Hughes, B., Grosswald, M.G., (1991). Pleistocene Beringia: An outright land bridge or a glacial valve constraining Asian migration to North America. Abstracts, 13th INQUA Congress, Beijing .Google Scholar
Kotilainen, A.T., Shackleton, N.J., (1995). Rapid climate variability in the North Pacific Ocean during the past 95,000 years. Nature 377, 323326.Google Scholar
Lambeck, K., Chappell, J., (2001). Sea level change through the last glacial cycle. Science 292, 679686.Google Scholar
Leffingwell, E.d.K., (1919). The Canning River Region, Northern Alaska. US Geological Survey Professional Paper vol. 109, .Google Scholar
Leg 145 Scientific Party, , (1993). Paleoceanographic record of North Pacific quantified. EOS, Transactions, American Geophysical Union 74, 36 406411.Google Scholar
Lindstrom, D.R., (1990). The Eurasian ice sheet formation and collapse resulting from natural atmospheric CO2 concentration variations. Paleoceanography 5, 2 207227.CrossRefGoogle Scholar
Mix, A.C., Lund, J.J., Pisias, N.G., Bodén, P., Bornmalm, L., Lyle, M., Pike, J., (1999). Rapid climate oscillations in the Northeast Pacific during the last deglaciation reflect Northern and Southern Hemisphere sources. Clark, P.U., Webb, R.S., Keigwin, L.D., Mechanisms of Global Climate Change at Millenial Time Scales. Geophysical Monograph vol. 112, American Geophysical Union, Washsington, DC., 127148.CrossRefGoogle Scholar
Okada, H., (1980). Pebbles and carbonate nodules from Deep See Drilling Project Leg 56 cores. Initial Reports of the Deep Seee Drilling Project vols. 56, 57, 10891105.Washington, DC.Google Scholar
Polyak, L., Edwards, M.H., Coakley, B.J., Jakobsson, M., (2001). Ice shelves in the Pleistocene Arctic Ocean inferred from glacigenic deep-sea bedforms. Nature 410, 453458.Google Scholar
Svendsen, J.L., Astakhov, V.I., Bolshiyanov, D.Y., Demidov, I., Dowdeswell, J.A., Gataullin, V., Hjort, C., Hubberten, H.W., E.L, , Mangerud, J., Melles, M., Möller, P., Saarnisto, M., Siegert, M.J., (1999). Maximum extent of the Eurasian ice sheets in the Barents and Kara Sea region during the Weichselian. Boreas 28, 1 234242.CrossRefGoogle Scholar
Vasil'chuk, Y.K., Kotlyakov, V.M., (2000). Principles of Isotope Geocryology and Glaciology. Moscow University Press, Moscow.[In Russian].Google Scholar