Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-15T11:14:23.924Z Has data issue: false hasContentIssue false

Collapse of Holocene mangrove ecosystems along the coastline of Oman

Published online by Cambridge University Press:  29 December 2020

Valeska Decker*
Affiliation:
Geology Section, Institute of Geosciences, Bonn University, Nussallee 8, 53115Bonn, Germany
Michaela Falkenroth
Affiliation:
Neotektonik und Georisiken, RWTH Aachen University, 52056 Aachen, Germany
Susanne Lindauer
Affiliation:
Curt-Engelhorn-Centre Archaeometry, C4, 8, 68159Mannheim, Germany
Jessica Landgraf
Affiliation:
Geology Section, Institute of Geosciences, Bonn University, Nussallee 8, 53115Bonn, Germany
Zahra Al-Lawati
Affiliation:
Department of Applied Geosciences, German University of Technology in Oman, PO Box 1816, PC 130, Muscat, Oman
Huda Al-Rahbi
Affiliation:
Department of Applied Geosciences, German University of Technology in Oman, PO Box 1816, PC 130, Muscat, Oman
Sven Oliver Franz
Affiliation:
Geology Section, Institute of Geosciences, Bonn University, Nussallee 8, 53115Bonn, Germany
Gösta Hoffmann
Affiliation:
Geology Section, Institute of Geosciences, Bonn University, Nussallee 8, 53115Bonn, Germany Neotektonik und Georisiken, RWTH Aachen University, 52056 Aachen, Germany
*
*Corresponding author at: e-mail address: [email protected] (V. Decker).

Abstract

Sedimentological, geochemical, and paleontological investigations of the coastline of northeastern Oman have provided the authors with an in-depth insight into Holocene sea levels and climate conditions. The spatial distribution and species assemblage of mangrove ecosystems are analyzed. These ecosystems are sensitive to changes in sea level and precipitation and thus reflect ecological conditions. The close proximity to archaeological sites allows us to draw conclusions regarding human interaction with the mangrove ecosystems. Our interdisciplinary inquiry reveals that the mangrove ecosystems along the east coast of Oman collapsed ~6000 cal yr BP on a decadal scale. There is no sedimentological evidence for a mid-Holocene sea-level highstand. The ecosystem collapse was not caused by sea-level variation or anthropogenic interferences; rather, it was the consequence of reduced precipitation values related to a southward shift of the Intertropical Convergence Zone. This resulted in a decrease of freshwater input and an increase in soil salinity. Further, the aridification of the area caused increased deflation and silting up of the lagoons.

Type
Research Article
Copyright
Copyright © University of Washington. Published by Cambridge University Press, 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Al-Hashmi, K., Al-Azri, A., Claereboudt, M.R., Piontkovski, S., Amin, S.M.N., 2013. Phytoplankton community structure of a mangrove habitat in the arid environment of Oman: the dominance of Peridinium quinquecorne. Journal of Fisheries and Aquatic Science 8, 595606.CrossRefGoogle Scholar
Alharbi, O.A., Williams, A.T., Phillips, M.R., Thomas, T., 2016. Textural characteristics of sediments along the southern Red Sea coastal areas, Saudi Arabia. Arabian Journal of Geosciences 9, 735.CrossRefGoogle Scholar
Atkinson, O.A., Thomas, D.S., Goudie, A.S., Bailey, R.M., 2011. Late Quaternary chronology of major dune ridge development in the northeast Rub'al-Khali, United Arab Emirates. Quaternary Research 76, 93105.CrossRefGoogle Scholar
Bailey, R.M., Thomas, D.S., 2014. A quantitative approach to understanding dated dune stratigraphies. Earth Surface Processes and Landforms 39, 614631.CrossRefGoogle Scholar
Bange, H.W., Bathmann, U., Behrens, J., Dahlke, F., Ebinghaus, R., Ekau, W., Emeis, K.-C., et al. , 2017. Coasts – A Vital Habitat Under Pressure. World Ocean Review: Living with the Oceans 5. Maribus, Hamburg, Germany.Google Scholar
Berger, J.F., Charpentier, V., Crassard, R., Martin, C., Davtian, G., López-Sáez, J.A., 2013. The dynamics of mangrove ecosystems: changes in sea level and the strategies of Neolithic settlements along the coast of Oman (6000–3000 cal. BC). Journal of Archaeological Science 40, 30873104.CrossRefGoogle Scholar
Berger, J.F., Guilbert-Berger, R., Marrast, A., Munoz, O., Guy, H., Barra, A., López-Sáez, J.A., et al. , 2020. First contribution of the excavation and chronostratigraphic study of the Ruways 1 Neolithic shell midden (Oman) in terms of Neolithisation, palaeoeconomy, social-environmental interactions and site formation processes. Arabian Archaeology and Epigraphy 31, 32-49.CrossRefGoogle Scholar
Berner, R.A., Raiswell, R., 1984. C/S method for distinguishing freshwater from marine sedimentary rocks. Geology 12, 365368.2.0.CO;2>CrossRefGoogle Scholar
Bernier, P., Dalongeville, R., Dupuis, B., de Medwecki, V., 1995. Holocene shoreline variations in the Persian Gulf: example of the Umm al-Qowayn Lagoon (UAE). Quaternary International 29–30, 95103.CrossRefGoogle Scholar
Beuzen-Waller, T., Stéphan, P., Pavlopoulos, K., Desruelles, S., Marrast, A., Puaud, S., Giraud, J., Fouache, É., 2019. Geoarchaeological investigation of the Quriyat coastal plain (Oman). Quaternary International 532, 98115.CrossRefGoogle Scholar
Biagi, P., 1994. A radiocarbon chronology for the aceramic shell-middens of coastal Oman. Arabian Archaeology and Epigraphy 5, 1731.CrossRefGoogle Scholar
Biagi, P., Nisbet, R., 1999. The shell-midden sites of RH-5 and RH-6 (Muscat, Sultanate of Oman) in their environmental setting. Archaeologia Polona 37, 3147.Google Scholar
Bisutti, I., Hilke, I., Raessler, M., 2004. Determination of total organic carbon: an overview of current methods. TrAC Trends in Analytical Chemistry 23, 716726.CrossRefGoogle Scholar
Blechschmidt, I., Matter, A., Preusser, F., Rieke-Zapp, D., 2009. Monsoon triggered formation of Quaternary alluvial megafans in the interior of Oman. Geomorphology 110, 128139.CrossRefGoogle Scholar
Bolaji, D.A., Edokpayi, C.A., Samuel, O.B., Akinnigbagbe, R.O., Ajulo, A.A., 2011. Morphological characteristics and salinity tolerance of Melanoides tuberculatus (Muller, 1774). World Journal of Biological Research 4, 111.Google Scholar
Bollmann, M., Bosch, T., Colijn, F., Ebinghaus, R., Froese, R., Güssow, K., Khalilian, S., et al. , 2010. World Ocean Review: Living with the Oceans 1. Maribus, Hamburg, Germany.Google Scholar
Bonfils, C., de Noblet-Ducoudré, N., Braconnot, P., Joussaume, S., 2001. Hot desert albedo and climate change: mid-Holocene monsoon in North Africa. Journal of Climate 14, 37243737.2.0.CO;2>CrossRefGoogle Scholar
Bosch, D.T., Dance, S.P., Moolenbeek, R.G., Oliver, P.G., 1995. Seashells of Eastern Arabia. Motivate Publishing, Dubai.Google Scholar
Bray, H.E., Stokes, S., 2004. Temporal patterns of arid-humid transitions in the south-eastern Arabian Peninsula based on optical dating. Geomorphology 59, 271280.CrossRefGoogle Scholar
Burns, S.J., Fleitmann, D., Matter, A., Neff, U., Mangini, A., 2001. Speleothem evidence from Oman for continental pluvial events during interglacial periods. Geology 29, 623626.2.0.CO;2>CrossRefGoogle Scholar
Burns, S.J., Matter, A., Frank, N., Mangini, A., 1998. Speleothem-based paleoclimate record from northern Oman. Geology 26, 499502.2.3.CO;2>CrossRefGoogle Scholar
Charpentier, V., 2002. Archéologie de la côtes des ichtyophages coquilles, squales et cétacés du site IVe-IIIe millénaire de Ra's al-Jinz. [Coastal archaeology of shellfish, sharks and cetaceans from the 4th to the 3rd millennium at Ra's al Jinz]. In: Cleuziou, S., Tosi, M., Zarins, J. (Eds.), Essays of the Late Prehistory of the Arabian Peninsula. Serie Orientale Roma XCIII, Rome, pp. 7399.Google Scholar
Charpentier, V., Angelluci, D., Méry, S., Saliège, J.-F., 2000. Autour de la mangrove morte de Suwayh, l'habitat VIe–Ve millénaire de Suwayh SWY-11. [Around the dead mangroves of Suwayh and the environment of Suwayh SWY-11 in the 6th to the 5th millennium]. Proceedings of the Seminar for Arabian Studies 30, 6985.Google Scholar
Charpentier, V., Marquis, P., Pellé, É., 2003. La nécropole et les derniers horizons Ve millénaire du site de Gorbat al-Mahar (Suwayh, SWY-1, Sultanat d'Oman): premiers résultats. [The necropolis and the last horizons 5th millennium of the Gorbat al-Mahar site (Suwayh, SWY-1, Sultanate of Oman): first results]. Proceedings of the Seminar for Arabian Studies 33, 1119.Google Scholar
Chen, R., Twilley, R.R., 1998. A gap dynamic model of mangrove forest development along gradients of soil salinity and nutrient resources. Journal of Ecology 86, 3751.CrossRefGoogle Scholar
Cleuziou, S., 2009. Extracting wealth from a land of starvation by creating social complexity: a dialogue between archaeology and climate? Comptes Rendus Geoscience 341, 726738.CrossRefGoogle Scholar
Cleuziou, S., Tosi, M., 2007. The great transformation. In: Cleuziou, S., Tosi, M. (Eds.), In the Shadow of the Ancestors. Al Nahda Printing Press, Muscat, pp. 6197.Google Scholar
Cramer, M.D., Hawkins, H.-J., 2009. A physiological mechanism for the formation of root casts. Palaeogeography, Palaeoclimatology, Palaeoecology 274, 125133.CrossRefGoogle Scholar
Curnick, D.J., Pettorelli, N., Amir, A.A., Balke, T., Barbier, E.B., Crooks, S., Dahdouh-Guebas, F., et al. , 2019. The value of small mangrove patches. Science 363, 239239.Google ScholarPubMed
Das, G.K., 2015. Estuarine Morphodynamics of the Sunderbans. Springer, Cham, Switzerland..CrossRefGoogle Scholar
Deckers, K., Döpper, S., Schmidt, C., 2019. Vegetation, land, and wood use at the sites of Bat and Al-Khashbah in Oman (fourth–third millennium BC). Arabian Archaeology and Epigraphy 30, 114.CrossRefGoogle Scholar
deMenocal, P.B., Tierney, J.E., 2012. Green Sahara: African humid periods paced by Earth's orbital changes. Nature Education Knowledge 3, 12.Google Scholar
Deutsches Institut für Normung e.V., 1987a. DIN 66165-1: Partikelgrößenanalyse; Siebanalyse; Grundlagen. [Particle size analysis; Sieving analysis; Fundamentals]. Beuth Verlag, Berlin.Google Scholar
Deutsches Institut für Normung e.V., 1987b. DIN 66165-2: Partikelgrößenanalyse; Siebanalyse; Durchführung. [Particle size analysis, Sieving analysis; Procedure]. Beuth Verlag, Berlin.Google Scholar
Deutsches Institut für Normung e.V., E. 14688-1: 2011-06. Geotechnische Erkundung und Untersuchung: Benennung, Beschreibung und Klassifizierung von Boden. Teil 1: Benennung und Beschreibung (ISO 14688-1:2002); Deutsche Fassung EN ISO 14688-1:2002. [Geotechnical Investigation and testing - Identification and classification of soil - Part 1: Identification and description (ISO 14688-1:2002); German version EN ISO 14688-1:2002]. Beuth Verlag, Berlin.Google Scholar
Ellison, A.M., Farnsworth, E.J., 1997. Simulated sea level change alters anatomy, physiology, growth, and reproduction of red mangrove (Rhizophora mangle L.). Oecologia 112, 435446.CrossRefGoogle Scholar
Ellison, J.C., 2019. Biogeomorphology of mangroves. In: Perillo, G.M.E., Wolanski, E., Cahoon, D., Hopkinson, C.S. (Eds.), Coastal Wetlands: An Integrated Ecosystem Approach. Elsevier, Amsterdam, pp. 687715.CrossRefGoogle Scholar
Ellison, J.C., Stoddart, D.R., 1991. Mangrove ecosystem collapse during predicted sea-level rise: Holocene analogues and implications. Journal of Coastal Research 7, 15.Google Scholar
Engel, M., Matter, A., Parker, A.G., Parton, A., Petraglia, M.D., Preston, G.W., Preusser, F., 2017. Lakes or wetlands? A comment on “The middle Holocene climatic records from Arabia: reassessing lacustrine environments, shift of ITCZ in Arabian Sea, and impacts of the southwest Indian and African monsoons” by Enzel et al. Global and Planetary Change 148, 258267.CrossRefGoogle Scholar
Enzel, Y., Kushnir, Y., Quade, J., 2015. The middle Holocene climatic records from Arabia: reassessing lacustrine environments, shift of ITCZ in Arabian Sea, and impacts of the southwest Indian and African monsoons. Global and Planetary Change 129, 6991.CrossRefGoogle Scholar
Enzel, Y., Quade, J., Kushnir, Y., 2017. Response to Engel et al. (in press): Lakes or wetlands? A comment on “The middle Holocene climatic records from Arabia: reassessing lacustrine environments, shift of ITCZ in Arabian Sea, and impacts of the southwest Indian and African monsoons” by Enzel et al. (2015). Global and Planetary Change 148, 268271.CrossRefGoogle Scholar
Ermertz, A., Kázmér, M., Adolphs, S., Falkenroth, M., Hoffmann, G., 2019. Geoarchaeological evidence for the decline of the medieval city of Qalhat, Oman. Open Quaternary 5, 114.CrossRefGoogle Scholar
Falkenroth, M., Adolphs, S., Cahnbley, M., Bagci, H., Kázmér, M., Mechernich, S., Hoffmann, G. 2020. Biological indicators reveal small-scale sea-level variability during MIS 5e (Sur, Sultanate of Oman). Open Quaternary 6, 120.CrossRefGoogle Scholar
Farani, G.L., Nogueira, M.M., Johnsson, R., 2015. The salt tolerance of the freshwater snail Melanoides tuberculata (Mollusca, Gastropoda), a bioinvader gastropod. Pan-American Journal of Aquatic Sciences 10, 212221.Google Scholar
Fleitmann, D., Burns, S.J., Mangini, A., Mudelsee, M., Kramers, J., Villa, I., Neff, U., et al. , 2007. Holocene ITCZ and Indian monsoon dynamics recorded in stalagmites from Oman and Yemen (Socotra). Quaternary Science Reviews 26, 170188.CrossRefGoogle Scholar
Fleitmann, D., Burns, S.J., Mudelsee, M., Neff, U., Kramers, J., Mangini, A., Matter, A., 2003. Holocene forcing of the Indian monsoon recorded in a stalagmite from southern Oman. Science 300, 17371739.CrossRefGoogle Scholar
Fouda, M.M., Al-Muharrami, M., 1995. An Initial Assessment of Mangrove Resources and Human Activities at Mahout Island, Arabian Sea, Oman. Asia-Pacific Symposium on Mangrove Ecosystems. Springer, Dordrecht, Netherlands, pp. 353362.Google Scholar
Fritz, H.M., Blount, C., Albusaidi, F.B., Al-Harthy, A.H.M., 2010. Cyclone Gonu storm surge in the Gulf of Oman. In: Charabi, Y. (Ed.), Indian Ocean Tropical Cyclones and Climate Change. Springer, Dordrecht, Netherlands, pp. 255263.CrossRefGoogle Scholar
Gasse, F., 2002. Diatom-inferred salinity and carbonate oxygen isotopes in Holocene waterbodies of the western Sahara and Sahel (Africa). Quaternary Science Reviews 21, 737767.CrossRefGoogle Scholar
Giosan, L., Clift, P.D., Macklin, M.G., Fuller, D.Q., Constantinescu, S., Durcan, J.A., Stevens, T., et al. , 2012. Fluvial landscapes of the Harappan civilization. Proceedings of the National Academy of Sciences 109, E1688E1694.CrossRefGoogle ScholarPubMed
Glennie, K.W., Singhvi, A.K., 2002. Event stratigraphy, paleoenvironment and chronology of SE Arabian deserts. Quaternary Science Reviews 21, 853869.CrossRefGoogle Scholar
Gregoricka, L.A., 2016. Human response to climate change during the Umm an-Nar/Wadi Suq transition in the United Arab Emirates. International Journal of Osteoarchaeology 26, 211220.CrossRefGoogle Scholar
Griffiths, M.L., Johnson, K.R., Pausata, F.S., White, J.C., Henderson, G.M., Wood, C.T., Yang, H., Ersek, V., Conrad, C., Sekhon, N., 2020. End of green Sahara amplified mid- to late Holocene megadroughts in mainland Southeast Asia. Nature Communications 11, 112.CrossRefGoogle ScholarPubMed
Hijma, M.P., Engelhart, S.E., Törnqvist, T.E., Horton, B.P., Hu, P., Hill, D.F., 2015. A protocol for a geological sea-level database. In: Shennan, I., Long, A.J., Horton, B.P. (Eds.), Handbook of Sea-Level Research. doi:10.1002/9781118452547.ch34.Google Scholar
Hirota, J., Szyper, J.P., 1975. Separation of total particulate carbon into inorganic and organic components. Limnology and Oceanography 20, 896900.CrossRefGoogle Scholar
Hoffmann, G., Meschede, M., Zacke, A., Al Kindi, M., 2016. Field Guide to the Geology of Northeastern Oman. Schweizerbart, Stuttgart.Google Scholar
Hoffmann, G., Rupprechter, M., Mayrhofer, C., 2013. Review der langfristigen Küstenentwicklung Nordomans: Senkung und Hebung. Zeitschrift der Deutschen Gesellschaft für Geowissenschaften 164, 237252.CrossRefGoogle Scholar
Hoffmann, G., Schneider, B., Mechernich, S., Falkenroth, M., Dunai, T., Preusser, F., 2020. Quaternary uplift along a passive continental margin (Oman, Indian Ocean). Geomorphology 350, 106870.CrossRefGoogle Scholar
Japan International Cooperation Agency, 2014. The Qurum Environmental Information Center Project: Final Report. Ministry of Environment and Climate Affairs, Muscat, Oman.Google Scholar
Kathayat, G., Cheng, H., Sinha, A., Yi, L., Li, X., Zhang, H., Li, H., Ning, Y., Edwards, R.L., 2017. The Indian monsoon variability and civilization changes in the Indian subcontinent. Science Advances 3,doi: 10.1126/sciadv.1701296.CrossRefGoogle ScholarPubMed
Keefe, C.W., 1994. The contribution of inorganic compounds to the particulate carbon, nitrogen, and phosphorus in suspended matter and surface sediments of Chesapeake Bay. Estuaries 17, 122130.CrossRefGoogle Scholar
Krauss, K.W., McKee, K.L., Lovelock, C.E., Cahoon, D.R., Saintilan, N., Reef, R., Chen, L., 2014. How mangrove forests adjust to rising sea level. New Phytologist 202, 1934.CrossRefGoogle ScholarPubMed
Kromer, B., Lindauer, S., Synal, H.-A., Wacker, L., 2013. MAMS: a new AMS facility at the Curt-Engelhorn-Centre for Achaeometry, Mannheim, Germany. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 294, 1113.CrossRefGoogle Scholar
Kwarteng, A.Y., Dorvlo, A.S., Vijaya Kumar, G.T., 2009. Analysis of a 27-year rainfall data (1977–2003) in the Sultanate of Oman. International Journal of Climatology: A Journal of the Royal Meteorological Society 29, 605617.CrossRefGoogle Scholar
Lézine, A.-M., 2009. Timing of vegetation changes at the end of the Holocene Humid Period in desert areas at the northern edge of the Atlantic and Indian monsoon systems. Comptes Rendus Geoscience 341, 750759.CrossRefGoogle Scholar
Lézine, A.-M., Ivory, S.J., Braconnot, P., Marti, O., 2017. Timing of the southward retreat of the ITCZ at the end of the Holocene Humid Period in southern Arabia: data-model comparison. Quaternary Science Reviews 164, 6876.CrossRefGoogle Scholar
Lézine, A.-M., Saliège, J.F., Mathieu, R., Tagliatela, T.L., Mery, S., Charpentier, V., Cleuziou, S., 2002. Mangroves of Oman during the late Holocene: climatic implications and impact on human settlements. Vegetation History and Archaeobotany 11, 221232.Google Scholar
Lindauer, S., Marali, S., Schöne, B.R., Uerpmann, H.-P., Kromer, B., Hinderer, M., 2016. Investigating the local reservoir age and stable isotopes of shells from southeast Arabia. Radiocarbon 59, 355372.CrossRefGoogle Scholar
Lindauer, S., Santos, G.M., Steinhof, A., Yousif, E., Phillips, C., Jasim, S.A., Uerpmann, H.-P., Hinderer, M., 2017. The local marine reservoir effect at Kalba (UAE) between the Neolithic and Bronze Age: an indicator of sea level and climate changes. Quaternary Geochronology 42, 105116.CrossRefGoogle Scholar
Lokier, S.W., Bateman, M.D., Larkin, N.R., Rye, P., Stewart, J.R., 2015. Late Quaternary sea-level changes of the Persian Gulf. Quaternary Research 84, 6981.CrossRefGoogle Scholar
Lovejoy, T.E., Hannah, L., 2005. Climate Change and Biodiversity. Yale University Press, New Haven, CT.Google Scholar
Lovelock, C.E., Cahoon, D.R., Friess, D.A., Guntenspergen, G.R., Krauss, K.W., Reef, R., Rogers, K., et al. , 2015. The vulnerability of Indo-Pacific mangrove forests to sea-level rise. Nature 526, 559563.CrossRefGoogle ScholarPubMed
Luis, A.J., Kawamura, H., 2002. Mechanism for sea surface temperature cooling in the Gulf of Oman during winter. Geophysical Research Letters 29, 16-116-4.CrossRefGoogle Scholar
Lüning, S., Gałka, M., Danladi, I.B., Adagunodo, T.A., Vahrenholt, F., 2018. Hydroclimate in Africa during the medieval climate anomaly. Palaeogeography, Palaeoclimatology, Palaeoecology 495, 309322.CrossRefGoogle Scholar
Maizels, J., 1990. Raised channel systems as indicators of palaeohydrologic change: a case study from Oman. Palaeogeography, Palaeoclimatology, Palaeoecology 76, 241277.CrossRefGoogle Scholar
Marrast, A., Béarez, P., Charpentier, V., 2020. Sharks in the lagoon? Fishing exploitation at the Neolithic site of Suwayh 1 (Ash Sharqiyah region, Arabian Sea, Sultanate of Oman). Arabian Archaeology and Epigraphy 31, 178-193.CrossRefGoogle Scholar
Martin, C., 2005. Stratégies et statut de la collecte des mollusques marins sur les sites côtiers d'Oman du Néolithique à l’âge du Bronze: apport des sites de Suwayh 1, Ra's al-Khabbah 1 et Ra's al-Jinz 2. [Strategies and status of the collection of marine molluscs at the coastal sites of Oman from the Neolithic to the Bronze Age: contributions of the sites Suwayh 1, Ra's al-Khabbah 1 and Ra's al-Jinz 2]. Paléorient 31, 169175.CrossRefGoogle Scholar
Mattern, F., Moraetis, D., Abbasi, I., Al Shukaili, B., Scharf, A., Claereboudt, M., Looker, E., Al Haddabi, N., Pracejus, B., 2018. Coastal dynamics of uplifted and emerged late Pleistocene near-shore coral patch reefs at Fins (eastern coastal Oman, Gulf of Oman). Journal of African Earth Sciences 138, 192200.CrossRefGoogle Scholar
Mattern, F., Scharf, A., Al-Sarmi, M., Pracejus, B., Al-Hinaai, A.-S., Al-Mamari, A., 2018. Compaction history of Upper Cretaceous shale and related tectonic framework, Arabian Plate, eastern Oman Mountains. Arabian Journal of Geosciences 11, 444.CrossRefGoogle Scholar
Maundu, P., Tengnäs, B.O., 2005. Useful Trees and Shrubs for Kenya. ICRAF Technical Handbook No. 35. World Agro-Forestry Centre, Eastern and Central Africa Regional Programme, Nairobi.Google Scholar
McGowan, J.A., Cayan, D.R., Dorman, L.M., 1998. Climate-ocean variability and ecosystem response in the northeast Pacific. Science 281, 210217.CrossRefGoogle ScholarPubMed
McLachlan, A., Fisher, M., Al-Habsi, H.N., Al-Shukairi, S.S., Al-Habsi, A.M., 1998. Ecology of sandy beaches in Oman. Journal of Coastal Conservation 4, 181190.CrossRefGoogle Scholar
Mitchell, J.F.B., Lowe, J., Wood, R.A., Vellinga, M., 2006. Extreme events due to human-induced climate change. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 364, 21172133.CrossRefGoogle ScholarPubMed
Mitrovica, J.X., Milne, G.A., 2002. On the origin of late Holocene sea-level highstands within equatorial ocean basins. Quaternary Science Reviews 21, 21792190.CrossRefGoogle Scholar
Moraetis, D., Mattern, F., Scharf, A., Frijia, G., Kusky, T.M., Yuan, Y., El-Hussain, I., 2018. Neogene to Quaternary uplift history along the passive margin of the northeastern Arabian Peninsula, eastern Al Hajar Mountains, Oman. Quaternary Research 90, 418434.CrossRefGoogle Scholar
Moraetis, D., Scharf, A., Mattern, F., Pavlopoulos, K., Forman, S., 2020. Quaternary Thrusting in the central Oman Mountains—novel observations and causes: insights from optical stimulate luminescence dating and kinematic fault analyses. Geosciences 10, 166.CrossRefGoogle Scholar
Neff, U., Burns, S.J., Mangini, A., Mudelsee, M., Fleitmann, D., Matter, A., 2001. Strong coherence between solar variability and the monsoon in Oman between 9 and 6 kyr ago. Nature 411, 290293.CrossRefGoogle ScholarPubMed
Parker, A.G., 2009. Pleistocene climate change in Arabia: developing a framework for hominin dispersal over the last 350 ka. In: Petraglia, M.D., Rose, J.I. (Eds.), The Evolution of Human Populations in Arabia. Springer, Dordrecht, Netherlands, pp. 3949.Google Scholar
Parker, A.G., Morley, M.W., Parton, A., Preston, G.W., Russ, H., Armitage, S.J., 2018. Chapter 2, geomorphology, geoarchaeology and palaeoenvironments. In: Drechsler, P. (Ed.), Dosariyah: Reinvestigating a Neolithic Coastal Community in the Eastern Arabia. British Foundation for the Study of Arabia Monograph No.19. Archaeopress, Oxford, pp. 21-55.Google Scholar
Parker, A.G., Rose, J.I., 2008. Climate change and human origins in southern Arabia. Proceedings of the Seminar for Arabian Studies 38, 2542.Google Scholar
Perdue, E.M., Koprivnjak, J.F., 2007. Using the C/N ratio to estimate terrigenous inputs of organic matter to aquatic environments. Estuarine, Coastal and Shelf Science 73, 6572.CrossRefGoogle Scholar
Peters, T., Al Battashy, M., Bläsi, H., Hauser, M., Immenhauser, A., Moser, L., Al Rajhi, A., 2001. Geological Map of Sur and Al Ashkharah, Sheet NF 40-8F and NF 40-12C, Explanatory Notes. Ministry of Commerce and Industry, Muscat, Oman.Google Scholar
Petraglia, M.D., Groucutt, H.S., Guagnin, M., Breeze, P.S., Boivin, N., 2020. Human responses to climate and ecosystem change in ancient Arabia. Proceedings of the National Academy of Sciences 117, 82638270.CrossRefGoogle ScholarPubMed
Piontkovski, S.A., Al-Gheilani, H.M.H., Jupp, B.P., Al-Azri, A.R., Al-Hashmi, K.A., 2012. Interannual changes in the Sea of Oman ecosystem. The Open Marine Biology Journal 6, 3852.CrossRefGoogle Scholar
Polidoro, B.A., Carpenter, K.E., Collins, L., Duke, N.C., Ellison, A.M., Ellison, J.C., Farnsworth, E.J., et al. , 2010. The loss of species: mangrove extinction risk and geographic areas of global concern. PLOS ONE 5, e10095.CrossRefGoogle ScholarPubMed
Preston, G.W., Parker, A.G., Walkington, H., Leng, M.J., Hodson, M.J., 2012. From nomadic herder-hunters to sedentary farmers: the relationship between climate change and ancient subsistence strategies in south-eastern Arabia. Journal of Arid Environments 86, 122130.CrossRefGoogle Scholar
Preusser, F., 2009. Chronology of the impact of Quaternary climate change on continental environments in the Arabian Peninsula. Comptes Rendus Geoscience 341, 621632.CrossRefGoogle Scholar
Preusser, F., Radies, D., Driehorst, F., Matter, A., 2005. Late Quaternary history of the coastal Wahiba Sands, Sultanate of Oman. Journal of Quaternary Science 20, 395405.CrossRefGoogle Scholar
Preusser, F., Radies, D., Matter, A., 2002. A 160,000-year record of dune development and atmospheric circulation in southern Arabia. Science 296, 20182020.CrossRefGoogle ScholarPubMed
Radies, D., Hasiotis, S.T., Preusser, F., Neubert, E., Matter, A., 2005. Paleoclimatic significance of early Holocene faunal assemblages in wet interdune deposits of the Wahiba Sand Sea, Sultanate of Oman. Journal of Arid Environments 62, 109125.CrossRefGoogle Scholar
Radies, D., Preusser, F., Matter, A., Mange, M., 2004. Eustatic and climatic controls on the development of the Wahiba Sand Sea, Sultanate of Oman. Sedimentology 51, 13591385.CrossRefGoogle Scholar
Ramsey, C.B., Lee, S., 2013. Recent and planned developments of the program OxCal. Radiocarbon 55, 720730.CrossRefGoogle Scholar
Ratajczak, Z., Carpenter, S.R., Ives, A.R., Kucharik, C.J., Ramiadantsoa, T., Stegner, M.A., Williams, J.W., Zhang, J., Turner, M.G., 2018. Abrupt change in ecological systems: inference and diagnosis. Trends in Ecology & Evolution 33, 513526.CrossRefGoogle ScholarPubMed
Reef, R., Feller, I.C., Lovelock, C.E., 2010. Nutrition of mangroves. Tree Physiology 30, 11481160.CrossRefGoogle ScholarPubMed
Reimer, P.J., Bard, E., Bayliss, A., Beck, J.W., Blackwell, P.G., Ramsey, C.B., Buck, C.E., et al. , 2013. IntCal13 and marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55, 18691887.CrossRefGoogle Scholar
Ricklefs, R.E., Latham, R.E., 1993. Global Patterns of Diversity in Mangrove Floras. In: Ricklefs, R.E., Schluter, D. (Eds.), Species Diversity in Ecological Communities: Historical and Geographical Perspectives. University of Chicago Press, Chicago, pp. 215229.Google Scholar
Rodgers, D.W., Gunatilaka, A., 2003. Bajada formation by monsoonal erosion of a subaerial forebulge, Sultanate of Oman. Sedimentary Geology 154, 127146.CrossRefGoogle Scholar
Rosenberg, T.M., Preusser, F., Blechschmidt, I., Fleitmann, D., Jagher, R., Matter, A., 2012. Late Pleistocene palaeolake in the interior of Oman: a potential key area for the dispersal of anatomically modern humans out-of-Africa? Journal of Quaternary Science 27, 1316.CrossRefGoogle Scholar
Rosenberg, T.M., Preusser, F., Fleitmann, D., Schwalb, A., Penkman, K., Schmid, T.W., Al-Shanti, M.A., Kadi, K., Matter, A., 2011. Humid periods in southern Arabia: windows of opportunity for modern human dispersal. Geology 39, 11151118.CrossRefGoogle Scholar
Rovere, A., Stocchi, P., Vacchi, M., 2016. Eustatic and relative sea level changes. Current Climate Change Reports 2, 221231.CrossRefGoogle Scholar
Saintilan, N., Khan, N.S., Ashe, E., Kelleway, J.J., Rogers, K., Woodroffe, C.D., Horton, B.P., 2020. Thresholds of mangrove survival under rapid sea level rise. Science 368, 11181121.CrossRefGoogle ScholarPubMed
Sathe, S.S., Lavate, R.A., Bhosale, L.J., 2013. Mangrove as source of energy for rural development with special reference to Ratnagiri and Sindhudarg district (MS) India. Bioscience Discovery 4, 198201.Google Scholar
Schmedemann, N., Schafmeister, M.T., Hoffmann, G., 2008. Numeric de-compaction of Holocene sediments. Polish Geological Institute Special Papers 23, 8794.Google Scholar
Sefton, J.P., 2020. Evaluating Mangrove Proxies for Quantitative Relative Sea-Level Reconstructions. Master's thesis, Durham University, Durham, UK.Google Scholar
Seneviratne, S.I., Nicholls, N., Easterling, D., Goodess, C.M., Kanae, S., Kossin, J., Luo, Y., et al. , 2012. Changes in climate extremes and their impacts on the natural physical environment. In: Field, C.B., Barros, V., Stocker, T.F., Qin, D., Dokken, D.J., Ebi, K.L., Mastrandrea, M.D., et al. (Eds.), Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation: A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change (IPCC). Cambridge University Press, Cambridge, UK, pp. 109230.CrossRefGoogle Scholar
Singh, G., Wasson, R.J., Agrawal, D.P., 1990. Vegetational and seasonal climatic changes since the last full glacial in the Thar Desert, northwestern India. Review of Palaeobotany and Palynology 64, 351358.CrossRefGoogle Scholar
Staubwasser, M., Weiss, H., 2006. Holocene climate and cultural evolution in late prehistoric–early historic West Asia. Quaternary Research 66, 372387.CrossRefGoogle Scholar
Steinbeiss, S., Beßler, H., Engels, C., Temperton, V.M., Buchmann, N., Roscher, C., Kreutziger, Y., Baade, J., Habekost, M., Gleixner, G., 2008. Plant diversity positively affects short-term soil carbon storage in experimental grasslands. Global Change Biology 14, 29372949.CrossRefGoogle Scholar
Stokes, S., Bray, H.E., 2005. Late Pleistocene eolian history of the Liwa region, Arabian Peninsula. Geological Society of America Bulletin 117, 14661480.CrossRefGoogle Scholar
Tierney, J.E., Pausata, F.S., deMenocal, P.B., 2017. Rainfall regimes of the green Sahara. Science Advances 3, doi: 10.1126/sciadv.1601503.CrossRefGoogle ScholarPubMed
Tomlinson, P.B., 2016. The Botany of Mangroves. Cambridge University Press, Cambridge, UK.CrossRefGoogle Scholar
Twilley, R.R., Rivera-Monroy, V.H., Rovai, A.S., Castañeda-Moya, E., Davis, S., 2019. Mangrove biogeochemistry at local to global scales using ecogeomorphic approaches. In: Perillo, G.M.E., Wolanski, E., Cahoon, D., Hopkinson, C.S. (Eds.), Coastal Wetlands: An Integrated Ecosystem Approach. Elsevier, Amsterdam, pp. 687715.Google Scholar
Ward, R.D., Friess, D.A., Day, R.H., Mackenzie, R.A., 2016. Impacts of climate change on mangrove ecosystems: a region by region overview. Ecosystem Health and Sustainability 2, e01211.CrossRefGoogle Scholar
Waselkov, G.A., 1987. Shellfish gathering and shell midden archaeology. In: Schiffer, M.B. (Ed.), Advances in Archaeological Method and Theory. Vol. 10. Academic Press, San Diego, pp. 93210.CrossRefGoogle Scholar
Watanabe, T.K., Watanabe, T., Yamazaki, A., Pfeiffer, M., 2019. Oman corals suggest that a stronger winter shamal season caused the Akkadian Empire (Mesopotamia) collapse. Geology 47, 11411145.CrossRefGoogle Scholar
Woodroffe, C.D., Rogers, K., McKee, K.L., Lovelock, C.E., Mendelssohn, I.A., Saintilan, N., 2016. Mangrove sedimentation and response to relative sea-level rise. Annual Review of Marine Science 8, 243266.CrossRefGoogle ScholarPubMed
Woodroffe, S.A., Horton, B.P., 2005. Holocene sea-level changes in the Indo-Pacific. Journal of Asian Earth Sciences 25, 2943.CrossRefGoogle Scholar
Woodroffe, S.A., Long, A.J., Punwong, P., Selby, K., Bryant, C. L., Marchant, R., 2015. Radiocarbon dating of mangrove sediments to constrain Holocene relative sea-level change on Zanzibar in the southwest Indian Ocean. The Holocene 25, 820831.CrossRefGoogle Scholar
Zazzo, A., Munoz, O., Saliège, J.F., Moreau, C., 2012. Variability in the marine radiocarbon reservoir effect in Muscat (Sultanate of Oman) during the 4th millennium BC: reflection of taphonomy or environment? Journal of Archaeological Science 39, 25592567.CrossRefGoogle Scholar
Supplementary material: File

Decker et al. supplementary material

Decker et al. supplementary material

Download Decker et al. supplementary material(File)
File 13.6 KB