Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-26T06:12:57.188Z Has data issue: false hasContentIssue false

Climatic Change on the Iberian Peninsula Recorded in a 30,000-Yr Pollen Record from Lake Banyoles

Published online by Cambridge University Press:  20 January 2017

Ramon Pèrez-Obiol
Affiliation:
Unitat de Botànica, Facultat de Ciències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
Ramon Julià
Affiliation:
Institut de Ciències de la Terra (Jaume Almera), CSIC, c/Martı́ i Franqués s/n, 08028 Barcelona, Spain

Abstract

The Banyoles lacustrine sequence shows that the vegetational history of the northeastern Iberian Peninsula during the last 30,000 yr follows the North Atlantic pattern of climatic oscillations. The Banyoles pollen diagram, supported by two calibrated 14C dates and nine U/Th dates, shows a clear interstadial event between 30,000 and 27,000 yr B.P., a Pleniglacial period with minor oscillations that ended abruptly ca. 14,420 ± 410 yr B.P., and a late-glacial sequence that records the classical stages described in Northern Europe: the Bølling-Allerød Interstade, the Younger Dryas event at 12,000 yr B.P. (U-series age), and a short warming phase between the Younger Dryas and the last cold event (dated at 11,000 yr B.P., U-series age).

Type
Articles
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bard, E. Arnold, M. Maurice, P. Duprat, J. Moyes, J., and Duplessy, J. C. (1987). Retreat velocity of the North Atlantic polar front during the last deglaciation determined by ,4C accelerator mass spectrometry. Nature 328, 791794.CrossRefGoogle Scholar
Bard, E. Hamelin, B. Fairbanks, R. G., and Zindler, A. (1990). Calibration of the 14C timescale over the past 30,000 years using mass spectrometric U-Th ages from Barbados corals. Nature 345, 405410.Google Scholar
Beaulieu, J. L., and Reille, M. (1984). A long upper-Pleistocene pollen record from Les Echets near Lyon, France. Boreas 13, 111112.Google Scholar
Bischoff, J. L., and Fitzpatrick, J. A. (1991). U-series dating of impure carbonates: An isochron technique using total-sample dissolution. Geochimica et Cosmochimica Acta 55, 543554.CrossRefGoogle Scholar
CLIMAP Project Members (1981). “Seasonal Reconstruction of the Earth’s Surface at the Last Glacial Maximum.” Geological Society of America; Map and Chart Series 36.Google Scholar
Duplessy, J. C. Delibrias, G. Turon, J. L. Pujol, C., and Duprat, J. (1981). Deglacial warming of the Northeastern Atlantic ocean: correlation with the paleoclimatic evolution of the European continent. Palaeogeography, Palaeoclimatology, Palaeoecology 35, 121144.CrossRefGoogle Scholar
Duplessy, J. C. Arnold, M. Maurice, P. Bard, E. Duprat, J., and Moyes, J. (1986). Direct dating of the oxygen-isotope record of the last delaciation by 14C accelerator mass spectrometry. Nature 320, 350352.Google Scholar
Fairbanks, R. G, (1989). A 17,000-year glacio-eustatic sea level record: Influence of glacial melting rates on the Younger Dryas event and deep-ocean circulation. Nature 342, 637642.Google Scholar
Fairbanks, R, G. (1990). The age and origin of the “Younger Dryas climatic event” in greenland ice cores. Paleoceanography 5(6), 937948.CrossRefGoogle Scholar
Follieri, M. Magri, D., and Sadori, L. (1988). 250,000-year pollen record from Valle di Castiglione (Roma). Pollen et Spores 20(3-4), 329356.Google Scholar
Goeury, C., and Beaulieu, J. L. (1979). A propos de la concentration du pollen & 1’aide de la liqueur de Thoulet dans les sediments mindraux. Pollen et Spores 21(1-2), 239251.Google Scholar
Hammer, C. U. Clausen, H. B., and Tauber, H. (1986). Ice-core dating of the Pleistocene/Holocene boundary applied to calibration of the 14C time scale. Radiocarbon 28, 284291.Google Scholar
Jansen, E., and Veum, T. (1990), Evidence for two-step deglaciation and its impact on North Atlantic deep-water circulation. Nature 343, 612616.CrossRefGoogle Scholar
Menéndez Amor, J., and Florschiitz, F. (1961). Contribucitfn al conocimiento de la historia de la vegetaci6n en Esparia durante el Cuatemario. Estudios Geoldgicos 17, 8389.Google Scholar
Monsterrat, J. (1991). Evoluci6n glaciar y postglaciar del clima y la vegetation en la vertiente sur del Pirineo: Estudia palinoldgico. Thesis, University de Barcelona.Google Scholar
Penalba, M. C. (1989). Dynamique de v£g€tation Tardiglaciaire et HolocSne du centre-nord de l’Espagne d’apres l’analyse pollinique. These, Universitie d’Aix-Marseille III.Google Scholar
PSrez-Obiol, R. (1988). “Histoire Tardiglaciaire et Holocfene de la vegetation de la region volcanique d’Olot (P6ninsule Ib6rique, N. E.). Pollen et Spores 30(2), 189202.Google Scholar
Pons, A., and Reille, M. (1988). The Holocene and upper Pleistocene pollen record from Padul (Granada, Spain). A new study. Palaeogeography, Palaeoclimatology, Palaeoecology 66, 243263.CrossRefGoogle Scholar
Reille, M. (1990). “Lemons de palynologie et d’analyse pollinique.” Editions du CNRS, Paris.Google Scholar
Ruddiman, W. F., and McIntyre, A. (1981). The North Atlantic Ocean during the last deglaciation. Palaeogeography, Palaeoclimatology, Palaeoecology 35, 145214.Google Scholar
Turner, C., and Hannon, G. E. (1988). Vegetational evidence for late Quaternary climatic changes in southwest Europe in relation to the influence of the North Atlantic Ocean. Philosophical Transcripts Royal Society of London 318, 451485.Google Scholar
Turon, J. L., and Londeix, L. (1988). Les assemblages de kystes de Dinoflage!I6s en M6diterran£e occidentale (Mer d’AIboran). Mise en Evidence de 1’evolution des paloenvironnements depuis le demier maximum glaciaire. Bull. Centres Rech. Explor.Prod. Elf Aquitaine 12(1), 313344.Google Scholar
Van Campo, M. (1984). Relations entre la v£g£tation de 1’Europe et les temperatures de surface oc6aniques apr£s le demier maximum glaciaire. Pollen et Spores 26(3-4), 497518.Google Scholar
Van Campo, M. (1985). L’abondance actuelle de Be tula sp et de Pin us sylvestris en Europe comparde a leur abondance il y a 13000 ans telle qu’elle ressort des analyses polliniques. In “llOe Congrgs national des Societes savantes,” Vol. 5, pp. 221230. Sciences, Montpellier.Google Scholar
Watts, W. A. (1986). Stages of climatic change from Full Glacial to Holocene In Northwest Spain, Southern France and Italy: A comparison of the Atlantic Coast and the Mediterranean Basin. In “Current Issues in Climatic Research. Proceedings of the EC Climatology Programme Symposium, Sophia Antipolis, France, October 1984” (Ghazi, A. and Fantechi, R., Ed.), pp. 101112.Google Scholar
Woillard, G. M. (1978). Grand Pile Peat Bog: A continuous pollen record for the last 140,000 years. Quaternary Research 9, 121.CrossRefGoogle Scholar