Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-13T19:57:23.895Z Has data issue: false hasContentIssue false

Climate variability at the southern boundaries of the Namib (southwestern Africa) and Atacama (northern Chile) coastal deserts during the last 120,000 yr

Published online by Cambridge University Press:  20 January 2017

Jan-Berend W. Stuut*
Affiliation:
Research Center Ocean Margins, Bremen University, Bremen 28334, Germany
Frank Lamy
Affiliation:
GeoForschungsZentrum (GFZ) Potsdam Telegrafenberg, Haus C, Potsdam 14473, Germany
*
*Corresponding author. Research Center Ocean Margins, Bremen University, PO Box 330440, Bremen 28334, Germany. Fax: +49 421 218 8916.

E-mail address:[email protected] (J.-B.W. Stuut).

Abstract

In this study, we present grain-size distributions of the terrigenous fraction of two deep-sea sediment cores from the SE Atlantic (offshore Namibia) and from the SE Pacific (offshore northern Chile), which we "unmix" into subpopulations and which are interpreted as coarse eolian dust, fine eolian dust, and fluvial mud. The downcore ratios of the proportions of eolian dust and fluvial mud subsequently represent paleocontinental aridity records of southwestern Africa and northern Chile for the last 120,000 yr. The two records show a relatively wet Last Glacial Maximum (LGM) compared to a relatively dry Holocene, but different orbital variability on longer time scales. Generally, the northern Chilean aridity record shows higher-frequency changes, which are closely related to precessional variation in solar insolation, compared to the southwestern African aridity record, which shows a remarkable resemblance to the global ice-volume record. We relate the changes in continental aridity in southwestern Africa and northern Chile to changes in the latitudinal position of the moisture-bearing Southern Westerlies, potentially driven by the sea-ice extent around Antarctica and overprinted by tropical forcing in the equatorial Pacific Ocean.

Type
Research Article
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, J.B., Shipp, S.S., Lowe, A.L., Wellner, J.S., Mosola, A.B., 2002. The Antarctic Ice Sheet during the last glacial maximum and its subsequent retreat history: a review. Quaternary Science Reviews 21, 4970.CrossRefGoogle Scholar
Arimoto, R., 2001. Eolian dust and climate: relationships to sources, tropospheric chemistry, transport and deposition. Earth-Science Reviews 54, 2942.CrossRefGoogle Scholar
Arimoto, R., Ray, B.J., Lewis, N.F., Tomza, U., Duce, R.A., 1997. Mass-particle size distributions of atmospheric dust and the dry deposition of dust to the remote ocean. Journal of Geophysical Research 102, 1586715874.CrossRefGoogle Scholar
Arz, H., Lamy, F., Pätzold, J., Müller, P.J., Prins, M.A., 2003. Mediterranean moisture source for an Early-Holocene humid period in the northern Red Sea. Science 300, 118121.CrossRefGoogle ScholarPubMed
Baker, P.A., 2002. Trans-Atlantic climate connections. Science 296, 6768.CrossRefGoogle ScholarPubMed
Baker, P.A., Rigsby, C.A., Seltzer, G.O., Fritz, S.C., Lowenstein, T.K., Bacher, N.P., Veliz, C., 2001. Tropical climate changes at millennial and orbital time scales on the Bolivian Altiplano. Nature 409, 698701.CrossRefGoogle Scholar
Boven, K.L., Rea, D.K., 1998. Partitioning of eolian and hemipelagic sediment in eastern equatorial Pacific core TR 163-31B and the late Quaternary paleoclimate of the Northern Andes. Journal of Sedimentary Research 68, 850855.CrossRefGoogle Scholar
Brathauer, U., Abelmann, A., 1999. Late Quaternary variations in sea surface temperatures and their relationship to orbital forcing recorded in the Southern Ocean (Atlantic sector). Paleoceanography 14, 135148.CrossRefGoogle Scholar
Clapperton, C.M., 1993. Nature of environmental changes in South America at the last glacial maximum. Palaeogeography, Palaeoclimatology, Palaeoecology 101, 189208.CrossRefGoogle Scholar
Clement, A.C., Cane, M., 1999. A role for the tropical Pacific coupled Ocean–Atmosphere System on Milankovitch and millennial timescales part I: modelling study of tropical Pacific variability. Clark, P.U., Webb, R.S., Keigwin, L.D., Mechanisms of Global Climate Change at Millennial Time Scales American Geophysical Union, Washington, DC.2334.Google Scholar
Cockroft, M.J., Wilkinson, M.J., Tyson, P.D., 1988. A palaeoclimatic model for the late Quaternary in southern Africa. Palaeoecology of Africa 19, 279282.Google Scholar
Cowling, R.M., Richardson, D.M., Mustart, P.J., 1997. Fynbos. Cowling, R.M., Richardson, D.M., Pierce, S.M., Vegetation of Southern Africa Cambridge University Press, Cambridge.99130.Google Scholar
Davis, J.C., 1973. Statistics and Data Analysis in Geology. John Wiley and Sons Inc., Singapore.Google Scholar
deMenocal, P.B., Ruddiman, W.F., Pokras, E.M., 1993. Influences of high- and low-latitude processes on African terrestrial climate: Pleistocene eolian records from equatorial Atlantic Ocean Drilling Program site 663. Paleoceanography 8, 209242.CrossRefGoogle Scholar
Dupont, L.M., Wyputta, U., 2003. Reconstructing pathways of Aeolian pollen transport to the marine sediments along the coastline of SW Africa. Quaternary Science Reviews 22, 157174.CrossRefGoogle Scholar
Frenz, M., Höppner, R., Stuut, J.-B.W., Wagner, T., Henrich, R., 2003. Surface sediment bulk geochemistry and grain-size composition related to the oceanic circulation along the South American continental margin in the Southwest Atlantic. Wefer, G., Mulitza, S., Ratmeyer, V., The South Atlantic in the Late Quaternary–Reconstruction of Material Budgets and Current Systems Springer Verlag, Berlin.347373.CrossRefGoogle Scholar
Gersonde, R., Abelmann, A., Brathauer, U., Becquey, S., Bianchi, C., Cortese, G., Grobe, H., Kuhn, G., Niebler, H.-S., Segl, M., Sieger, R., Zielinski, U., Fütterer, D.K., 2003. Last glacial sea surface temperatures and sea-ice extent in the Southern Ocean (Atlantic–Indian sector): a multiproxy approach. Paleoceanography 18, 1061.CrossRefGoogle Scholar
Gildor, H., Tziperman, E., 2000. Sea ice as the glacial cycles' climate switch: role of seasonal and orbital forcing. Paleoceanography 15, 605615.CrossRefGoogle Scholar
Gildor, H., Tziperman, E., 2001. A sea ice climate switch mechanism for the 100-kyr glacial cycles. Journal of Geophysical Research 106, 91179134.CrossRefGoogle Scholar
Guerzoni, S., Quarantotto, G., Cesari, G., Molinaroli, E., Rampazzo, G., Le Bolloch, O., 1996. Trace metal composition and grain size of particulates in aerosols and precipitation collected in NW Mediterranean (39N, 9E) a multivariate analysis. Guerzoni, S., Chester, R., The Impact of Desert Dust Across the Mediterranean Kluwer Academic Publishers, Dordrecht.333338.CrossRefGoogle Scholar
Hebbeln, D., Wefer, G., Cruise participants 1995. Cruise Report of R/V Sonne Cruise 102, Valparaiso–Valparaiso, 09.05–28.06.95. Universität Bremen, Fachbereich Geowissenschaften, Bremen.126.Google Scholar
Hesse, P.P., 1994. The record of continental dust from Australia in Tasman sea sediments. Quaternary Science Reviews 13, 257272.CrossRefGoogle Scholar
Hesse, P.P., McTainsh, G.H., 1999. Last Glacial Maximum to early Holocene wind strength in the mid-latitudes of the Southern Hemisphere from Aeolian dust in the Tasman Sea. Quaternary Research 52, 343349.CrossRefGoogle Scholar
Hesse, P.P., McTainsh, G.H., 2003. Australian dust deposits: modern processes and the Quaternary record. Quaternary Science Reviews 22, 20072035.CrossRefGoogle Scholar
Hesse, P.P., Humphreys, G.S., Selkirk, P.M., Adamson, D.A., Gore, D.B., Nobes, D.C., Price, D.M., Schwenninger, J.-L., Smith, B., Tulau, M., Hemmings, F., 2003. Late Quaternary Aeolian dunes on the presently humid Blue Mountains, Eastern Australia. Quaternary International 108, 1332.CrossRefGoogle Scholar
Hesse, P.P., Magee, J.W., van der Kaars, S., 2004. Late Quaternary climates of the Australian arid zone: a review. Quaternary International 118–119, 87102.CrossRefGoogle Scholar
Heusser, C.J., 1989. Southern Westerlies during the Last Glacial Maximum. Quaternary Research 31, 423425.CrossRefGoogle Scholar
Holz, C., Stuut, J.-B.W., Henrich, R., (in press). Terrigenous sedimentation processes along the continental margin off NW-Africa: implications from grain-size analyses of surface sediments.. Sedimentology. Google Scholar
Iriondo, M., 1999. Climatic changes in the South American plains: records of a continent-scale oscillation. Quaternary International 57/58, 93112.CrossRefGoogle Scholar
Jansen, J.H.F., Alderliesten, C., Houston, C.M., De Jong, A.F.M., Van der Borg, K., Van Iperen, J.M., 1989. Aridity in equatorial Africa during the last 225,000 years: a record of opal phytoliths/freshwater diatoms from the Zaire (Congo) deep-sea fan (NE Angola Basin). Radiocarbon 31, 557569.CrossRefGoogle Scholar
Johnson, T.C., Brown, E.T., McManus, J., Barry, S., Barker, P., Gasse, F., 2002. A high-resolution paleoclimate record spanning the past 25,000 years in southern East Africa. Science 296, 113116.CrossRefGoogle Scholar
Kiefert, L., McTainsh, G.H., Nickling, W.G., 1996. Sedimentological characteristics of Saharan and Australian dusts. Guerzoni, S., Chester, R., The Impact of Desert Dust Across the Mediterranean Kluwer Academic Publishers, Dordrecht.183190.CrossRefGoogle Scholar
Kohfeld, K.E., Harrison, S.P., 2001. DIRTMAP: the geological record of dust. Earth-Science Reviews 54, 81114.CrossRefGoogle Scholar
Konert, M., Vandenberghe, J., 1997. Comparison of laser grain size analysis with pipette and sieve analysis: a solution for the underestimation of the clay fraction. Sedimentology 44, 523535.CrossRefGoogle Scholar
Koopmann, B., 1981. Sedimentation von Saharastaub im subtropischen Nordatlantik während der letzten 25.000 Jahre. Meteor-Forschungsergebnisse. Reihe C, Geologie und Geophysik 35, 2359.Google Scholar
Koutavas, A., Lynch-Stieglitz, J., Marchitto, T.M. Jr., Sachs, J.P., 2002. El Niño-like pattern in ice age tropical Pacific sea surface temperature.. Science 297, 226230.CrossRefGoogle ScholarPubMed
Lamy, F., Hebbeln, D., Wefer, G., 1998a. Late Quaternary processional cycles of terrigenous sediment input off the Norte Chico, Chile (27.5°S) and paleoclimatic implications. Palaeogeography, Palaeoclimatology, Palaeoecology 141, 233251.CrossRefGoogle Scholar
Lamy, F., Hebbeln, D., Wefer, G., 1998b. Terrigenous sediment supply along the Chilean continental margin: modern regional patterns of texture and composition. Geologische Rundschau 87, 477494.CrossRefGoogle Scholar
Lamy, F., Klump, J., Hebbeln, D., Wefer, G., 2000. Late Quaternary rapid climate change in northern Chile. Terra Nova 12, 813.CrossRefGoogle Scholar
Lamy, F., Hebbeln, D., Röhl, U., Wefer, G., 2001. Holocene rainfall variability in southern Chile: a marine record of latitudinal shifts of the Southern Westerlies. Earth and Planetary Science Letters 185, 369382.CrossRefGoogle Scholar
Lamy, F., Rühlemann, C., Hebbeln, D., Wefer, G., 2002. High- and low-latitude climate control on the position of the southern Peru–Chile current during the Holocene. Paleoceanography 17, 16011610.CrossRefGoogle Scholar
Lancaster, N., 2002. How dry was dry?–Late Pleistocene palaeoclimates in the Namib Desert. Quaternary Science Reviews 21, 769782.CrossRefGoogle Scholar
Little, M.G., Schneider, R.R., Kroon, D., Price, B., Summerhayes, C.P., Segl, M., 1997. Trade wind forcing of upwelling, seasonality, and Heinrich events as a response to sub-Milankovitch climate variability. Paleoceanography 12, 568576.CrossRefGoogle Scholar
Markgraf, V., 1998. Past climates of South America. Hobbs, J.E., Lindesay, J.A., Bridgman, H.A., Climates of the Southern Continents: Present, Past and Future Wiley, New York.107134.Google Scholar
Markgraf, V., Dodson, J.R., Kershaw, P.A., McGlone, M.S., Nicholls, N., 1992. Evolution of late Pleistocene and Holocene climates in the circum-South Pacific land areas. Climate Dynamics 6, 193211.CrossRefGoogle Scholar
Matsumoto, K., Lynch-Stieglitz, J., Anderson, R.F., 2001. Similar glacial and Holocene Southern Ocean hydrography. Paleoceanography 16, 445454.CrossRefGoogle Scholar
Matthewson, A.P., Shimmield, G.B., Kroon, D., 1995. A 300 kyr high-resolution aridity record of the North-African continent. Paleoceanography 10, 677692.CrossRefGoogle Scholar
Meadows, M.E., Baxter, A.J., 1999. Late Quaternary Palaeoenvironments of the southwestern Cape, South Africa: a regional synthesis. Quaternary International 57/58, 193206.CrossRefGoogle Scholar
Miller, A., 1976. The climate of Chile. World Survey of Climatology vol. 12., Elsevier, Amsterdam.113145.Google Scholar
Moreno, A., Cacho, I., Canals, M., Prins, M.A., Sánchez-Goñi, M.-F., Grimalt, J.O., Weltje, G.J., 2002. Saharan dust transport and high-latitude glacial climatic variability: the Alboran Sea record. Quaternary Research 58, 318328.CrossRefGoogle Scholar
Morley, J.J., 1989. Variations in high-latitude oceanographic fronts in the southern Indian Ocean: an estimation based on faunal changes. Paleoceanography 4, 547554.CrossRefGoogle Scholar
Nicholson, S.E., 2000. The nature of rainfall variability over Africa on time scales of decades to millennia. Global and Planetary Change 26, 137158.CrossRefGoogle Scholar
Paillard, D., Labeyrie, L., Yiou, P., 1996. Macintosh program performs time-series analysis. Eos, Transactions-American Geophysical Union 77, 379.CrossRefGoogle Scholar
Partridge, T.C., deMenocal, P.B., Lorentz, S.A., Paiker, M.J., Vogel, J.C., 1997. Orbital forcing of climate over South Africa: a 200,000 year rainfall record from the Pretoria Saltpan. Quaternary Science Reviews 16, 11251133.CrossRefGoogle Scholar
Prins, M.A., Weltje, G.J., 1999. End-member modeling of siliciclastic grain-size distributions: the Late Quaternary record of eolian and fluvial sediment supply to the Arabian Sea and its paleoclimatic significance. Harbaugh, J., Watney, L., Rankey, G., Slingerland, R., Goldstein, R., Franseen, E., Numerical Experiments in Stratigraphy: Recent Advances in Stratigraphic and Sedimentologic Computer Simulations. SEPM Special Publication vol. 62, Society for Sedimentary Geology, 91111.Google Scholar
Prins, M.A., Stuut, J.-B.W., Lamy, F., Weltje, G.J., 1999. End-member modelling of grain-size distributions of deep-sea detrital sediments and its palaeoclimatic significance: examples from the NW Indian, E Atlantic and SE Pacific Oceans. Geophysical Research Abstracts 1, 564.Google Scholar
Pye, K., 1989. Processes of fine particle formation, dust source regions, and climatic changes. Leinen, M., Sarnthein, M., Palaeoclimatology and Palaeometeorology: Modern and Past Patterns of Global Atmospheric Transport. NATO ASI Series. Series C: Mathematical and Physical Sciences vol. 282, Kluwer Academic Publishers, Dordrecht.330.Google Scholar
Rea, D.K., Hovan, S.A., 1995. Grain size distribution and depositional processes of the mineral component of abyssal sediments: lessons from the North Pacific. Paleoceanography 10, 251258.CrossRefGoogle Scholar
Ruttland, J., Fuenzalida, H., 1991. Synoptic aspects of the central Chile rainfall variability associated with the Southern Oscillation. International Journal of Climatology 11, 6376.Google Scholar
Sarnthein, M., Tetzlaff, G., Koopmann, B., Wolter, K., Pflaumann, U., 1981. Glacial and interglacial wind regimes over the eastern subtropical Atlantic and North–West Africa. Nature 293, 193196.CrossRefGoogle Scholar
Schütz, L., Jänicke, R., 1980. Eolian dust from the Sahara Desert. Palaeoecology of Africa 12, 9798.Google Scholar
Shemesh, A., Hodell, D.A., Crosta, X., Kanfoush, S.L., Charles, C.D., Guilderson, T.P., 2002. Sequence of events during the last deglaciation in Southern Ocean sediments and Antarctic ice cores. Paleceanography 17, 10561062.Google Scholar
Shi, N., Dupont, L.M., Beug, H.-J., Schneider, R., 2000. Correlation between vegetation in southwestern Africa and Oceanic upwelling in the past 21,000 years. Quaternary Research 54, 7280.CrossRefGoogle Scholar
Simmonds, I., 1981. The effect of sea ice on a general circulation model of the Southern Hemisphere. International Association of Hydrological Sciences Special Publication 131, 193206.Google Scholar
Stuut, J.-B.W., 2001. Late Quaternary southwestern African terrestrial-climate signals in the marine record of Walvis Ridge, SE Atlantic Ocean.. Geologica Ultraiectina No. 212, Unpublished PhD-thesis, Utrecht University.Google Scholar
Stuut, J.-B.W., Prins, M.A., Jansen, J.H.F., 2002a. Fast reconnaissance of carbonate dissolution based on the size distribution of calcareous ooze on Walvis Ridge, SE Atlantic Ocean. Marine Geology 190, 563571.CrossRefGoogle Scholar
Stuut, J.-B.W., Prins, M.A., Schneider, R.R., Weltje, G.J., Jansen, J.H.F., Postma, G., 2002b. A 300-kyr record of aridity and wind strength in southwestern Africa: inferences from grain-size distributions of sediments on Walvis Ridge, SE Atlantic. Marine Geology 180, 221233.CrossRefGoogle Scholar
Thomas, D.S.G., Shaw, P.A., 2002. Late Quaternary environmental change in central southern Africa: new data, synthesis, issues and prospects. Quaternary Science Reviews 21, 783797.CrossRefGoogle Scholar
Thompson, L.G., Davis, M.E., Mosley-Thompson, E., Sowers, A., Henderson, K.A., Zagorodov, V.S., Lin, P.-N., Mikhalenko, V.N., Campen, R.K., Bolzan, J.F., Cole-Dai, J., Francou, B., 1998. A 25,000 year tropical climate history from the Bolivian ice cores. Science 282, 18581864.CrossRefGoogle Scholar
Tyson, P.D., 1986. Climatic Change and Variability in Southern Africa. Oxford Univ. Press, Cape Town.Google Scholar
Valdes, P.J., 2000. South American palaeoclimate model simulations: how reliable are the models?. Journal of Quaternary Sciences 15, 357368.3.0.CO;2-8>CrossRefGoogle Scholar
Van Zinderen Bakker, E.M.S., 1976. The evolution of Late Quaternary paleoclimates of Southern Africa. Palaeoecology of Africa 9, 160202.Google Scholar
Weltje, G., 1997. End-member modelling of compositional data: numerical-statistical algorithms for solving the explicit mixing problem. Journal of Mathematical Geology 29, 503549.CrossRefGoogle Scholar
Weltje, G.J., Prins, M.A., 2003. Muddled or mixed? Inferring palaeoclimate from size distributions of deep-sea clastics. Sedimentary Geology 162, 3962.CrossRefGoogle Scholar
West, S., Jansen, J.H.F., Stuut, J.-B.W., 2004. Surface water conditions in the Northern Benguela Region (SE Atlantic) during the last 450 ky reconstructed from assemblages of planktonic foraminifera. Marine Micropaleontology 51, 321344.CrossRefGoogle Scholar