Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-27T16:45:40.514Z Has data issue: false hasContentIssue false

Climate drying and associated forest decline in the lowlands of northern Guatemala during the late Holocene

Published online by Cambridge University Press:  20 January 2017

Andreas D. Mueller*
Affiliation:
Geological Institute, Department of Earth Science, ETH Zurich, Switzerland
Gerald A. Islebe
Affiliation:
El Colegio de la Frontera Sur, Unidad Chetumal Herbario, AP 424, Quintana Roo, Mexico
Michael B. Hillesheim
Affiliation:
Department of Geological Sciences, University of Florida, Gainesville, 32611, USA Land Use and Environmental Change Institute (LUECI), University of Florida, Gainesville, 32611, USA
Dustin A. Grzesik
Affiliation:
Department of Geological Sciences, University of Florida, Gainesville, 32611, USA Land Use and Environmental Change Institute (LUECI), University of Florida, Gainesville, 32611, USA
Flavio S. Anselmetti
Affiliation:
Eawag, Swiss Federal Institute of Aquatic Science and Technology, Duebendorf, Switzerland
Daniel Ariztegui
Affiliation:
Section of Earth Sciences, University of Geneva, Geneva, Switzerland
Mark Brenner
Affiliation:
Department of Geological Sciences, University of Florida, Gainesville, 32611, USA Land Use and Environmental Change Institute (LUECI), University of Florida, Gainesville, 32611, USA
Jason H. Curtis
Affiliation:
Department of Geological Sciences, University of Florida, Gainesville, 32611, USA Land Use and Environmental Change Institute (LUECI), University of Florida, Gainesville, 32611, USA
David A. Hodell
Affiliation:
Department of Geological Sciences, University of Florida, Gainesville, 32611, USA Land Use and Environmental Change Institute (LUECI), University of Florida, Gainesville, 32611, USA Department of Earth Sciences, University of Cambridge, Cambridge, CB2 3EQ, UK
Kathryn A. Venz
Affiliation:
Department of Geological Sciences, University of Florida, Gainesville, 32611, USA Land Use and Environmental Change Institute (LUECI), University of Florida, Gainesville, 32611, USA
*
Corresponding author. Geological Institute, ETH Zurich Universitaetstrasse 16CH-8092 Zürich, Switzerland. Email Address:[email protected]

Abstract

Palynological studies document forest disappearance during the late Holocene in the tropical Maya lowlands of northern Guatemala. The question remains as to whether this vegetation change was driven exclusively by anthropogenic deforestation, as previously suggested, or whether it was partly attributable to climate changes. We report multiple palaeoclimate and palaeoenvironment proxies (pollen, geochemical, sedimentological) from sediment cores collected in Lake Petén Itzá, northern Guatemala. Our data indicate that the earliest phase of late Holocene tropical forest reduction in this area started at ∼ 4500 cal yr BP, simultaneous with the onset of a circum-Caribbean drying trend that lasted for ∼ 1500 yr. This forest decline preceded the appearance of anthropogenically associated Zea mays pollen. We conclude that vegetation changes in Petén during the period from ∼ 4500 to ∼ 3000 cal yr BP were largely a consequence of dry climate conditions. Furthermore, palaeoclimate data from low latitudes in North Africa point to teleconnective linkages of this drying trend on both sides of the Atlantic Ocean.

Type
Articles
Copyright
University of Washington

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anselmetti, F.S., Ariztegui, D., Brenner, M., Hodell, D.A., and Rosenmeier, M.F. Quantification of soil erosion rates related to ancient Maya deforestation. Geology 35, (2007). 915918.Google Scholar
Anselmetti, F.S, Ariztegui, D., Hodell, D.A., Hillesheim, M.B., Brenner, M., Gilli, A., McKenzie, J.A., and Mueller, A.D. Late Quaternary climate-induced lake level variations in Lake Petén Itzá, Guatemala, inferred from seismic stratigraphic analysis. Palaeogeography Palaeoclimatology Palaeoecology 230, (2006). 5269.Google Scholar
Baker, P.A., Seltzer, G.O., Fritz, S.C., Dunbar, R.B., Grove, M.J., Tapia, P.M., Cross, S.L., Rowe, H.D., and Broda, J.P. The history of the South American tropical precipitations for the past 25,000 years. Science 291, (2001). 640643.Google Scholar
Batten, D.J., and Grenfell, H.R. Botryococcus . Jansonius, J., and McGregor, D.C. Palynology: Principles and Applications. (1996). American Association of Stratigraphic Palynologists Foundation, 205214.Google Scholar
Binford, M.W. Paleolimnology of the Petén Lake District, Guatemala. Hydrobiologia 103, (1983). 199203.CrossRefGoogle Scholar
Brenner, M. Lakes Salpeten and Quexil, Petén, Guatemala, Central America. Gierlowski-Kordesch, E., Kelts, K. Global Geological Record of Lake Basins 1, (1994). Cambridge University Press, Cambridge. 377380.Google Scholar
Brenner, M., Rosenmeier, M.F., Hodell, D.A., and Curtis, J.H. Paleolimnology of the Maya lowlands: long-term perspectives on interactions among climate, environment, and humans. Ancient Mesoamerica 13, (2002). 141157.Google Scholar
Bronk Ramsey, C. (2005). OxCal program. Version 3.10.Google Scholar
Cheng, W., Bitz, C.M., and Chiang, J.C.H. Adjustment of the global climate to an abrupt slowdown of the Atlantic meridional overturning circulation. Schmittner, A., Chiang, J.C.H., Hemming, S.R. Ocean Circulation: Mechanisms and Impacts 173, (2007). AGU Monograph, 295314.Google Scholar
Chiang, J.C.H., and Bitz, M. Influence of high latitude ice on the position of the marine intertropical convergence zone. Climate Dynamics (2005). http://dx.doi.org/10.1007/s00382-005-0040-5 Google Scholar
Clark, J.E., and Blake, M. Power and prestige: competitive generosity and the emergence of rank in lowland Mesoamerica. Brumfiel, E.M., and Fox, J.W. Factional Competition and Political Development in the New World. (1994). Cambridge University Press, Cambridge. 1730.Google Scholar
Curtis, J.H., Brenner, M., Hodell, D.A., Balser, R.A., Islebe, G.A., and Hooghiemstra, H. A multi-proxy study of Holocene environmental change in the Maya lowlands of Petén, Guatemala. Journal of Paleolimnology 19, (1998). 139159.Google Scholar
Curtis, J.H., Brenner, M., and Hodell, D.A. Climate change in Lake Valencia Basin, Venezuela, ∼ 12,600 yr BP to present. The Holocene 9, (1999). 609619.Google Scholar
Deevey, E.S., Rice, D.S., Rice, P.M., Vaughan, H.H., Brenner, M., and Flannery, M.S. Mayan urbanism: impact on a tropical karst environment. Science 206, (1979). 298306.Google Scholar
Gasse, F. Hydrological changes in the African tropics since the Last Glacial Maximum. Quaternary Science Reviews 19, (2000). 189211.Google Scholar
Giannini, A., Kushnir, Y., and Cane, M.A. Interdecadal changes in the ENSO teleconnection to the Caribbean Region and the North Atlantic Oscillation. Journal of Climate 14, (2001). 28672879.Google Scholar
Hastenrath, S. Interannual variability and the annual cycle: mechanisms of circulation and climate in the tropical Atlantic sector. Monthly Weather Review 112, (1984). 10971107.Google Scholar
Haug, G.H., Hughen, K.A., Sigman, D.M., Peterson, L.C., and Roehl, U. Southward migration of the intertropical convergence zone through the Holocene. Science 293, (2001). 13041308.CrossRefGoogle ScholarPubMed
Hillesheim, M.B., (2005a). Climate change in Central America during the late deglacial and early Holocene inferred from lacustrine sediments in Lake Petén Itzá, Guatemala. M.S. Thesis, University of Florida, Gainesville, Fl., (100). pp.Google Scholar
Hillesheim, M.B., Hodell, D.A., Leyden, B.W., Brenner, M., Curtis, J.H., Anselmetti, F.S., Ariztegui, D., Buck, D.G., Guilderson, T.P., Rosenmeier, M.F., Schnurrenberger, D.W., (2005b). Climate change in lowland Central America during the late deglacial and early Holocene. Journal of Quaternary Science 20, (4), 363376.Google Scholar
Hodell, D.A., Brenner, M., and Curtis, J.H. Climate change in the northern American tropics since the last Ice Age: implications for environment and culture. Lentz, D.L. Imperfect Balance: Landscape Transformations in the Precolumbian Americas. (2000). Columbia University Press, New York. 1338.Google Scholar
Hodell, D.A., Curtis, J.H., Jones, G.A., Higuera-Gundy, A., Brenner, M., Binford, M.W., and Dorsey, K.T. Reconstruction of Caribbean climate change over the past 10,500 years. Nature 352, (1991). 790793.Google Scholar
Hodell, D.A., Anselmetti, F., Ariztegui, D., Brenner, M., Bush, M.B., Correa-Metrio, A., Curtis, J.H., Escobar, J., Gilli, A., Grzesik, D.A., Guilderson, T.P., Kutterolf, S., and Mueller, A.D. An 85-ka record of climate change in lowland Central America. Quaternary Science Reviews 27, (2008). 11521165.Google Scholar
Huang, Y., Street-Perrott, F.A., Metcalfe, S.E., Brenner, M., Moreland, M., and Freeman, K.H. Climate change as the dominant control on glacial–interglacial variations in C3 and C4 plant abundance. Science 293, (2001). 16471651.Google Scholar
Islebe, G.A., Hooghiemstra, H., Brenner, M., Curtis, J.H., and Hodell, D.A. A Holocene vegetation history from lowland Guatemala. The Holocene 6, (1996). 265271.Google Scholar
Jones, J.G. Pollen evidence for early settlement and agriculture in northern Belize. Palynology 18, (1994). 205211.Google Scholar
Johnson, T.C., Brown, E.T., McManus, J., Barry, S., Barker, P., and Gasse, F. A high-resolution paleoclimate record spanning the past 25,000 years in southern East Africa. Science 296, (2002). 113132.Google Scholar
Kennett, D.J., Voorhies, B., and Martorana, D. An evolutionary model for the origins of agriculture on the Pacific coast of Southern Mexico. Kennett, D.J., and Winterhalder, B. Behavioral Ecology and the Transition to Agriculture. (2006). University of California Press, Berkeley. 103136.Google Scholar
Leyden, B.W. Pollen evidence for climatic variability and cultural disturbance in the Maya lowlands. Ancient Mesoamerica 13, (2002). 85101.Google Scholar
Mestas-Nunez, A.M., Enfield, D.B., and Zhang, C. Water vapor fluxes over the Intra-Americas Sea: seasonal and interannual variability and associations with rainfall. Journal of Climate 20, 9 (2007). 19101922.Google Scholar
Newell, S. D., (2005). An Analysis of Compound Specific Carbon Isotopes of Lipid Biomarkers: A Proxy for Paleoenvironmental Change in the Maya lowlands of Peten, Guatemala. M.S. Thesis, University of Florida, Gainesville, Fl., (104). pp.Google Scholar
Neff, H., Pearsall, D.M., Jones, J.G., Arroyo, B., and Freidel, D.E. Climate change and population history in the Pacific lowlands of southern Mesoamerica. Quaternary Research 65, (2006). 390400.CrossRefGoogle Scholar
Peterson, L.C., and Haug, G.H. Variability in the mean latitude of the Atlantic intertropical convergence zone as recorded by riverine input of sediments to the Cariaco Basin (Venezuela). Palaeogeography Palaeoclimatology Palaeoecology 234, (2006). 97113.Google Scholar
Pohl, M.E.D., Pope, K.O., Jones, J.G., Jacob, J.S., Piperno, D.R., deFrance, S.D., Lentz, D.L., Gifford, J.A., Danforth, M.E., and Josserand, J.K. Early agriculture in the Maya lowlands. Latin American Antiquity 7, (1996). 355372.CrossRefGoogle Scholar
Pohl, M.E.D., Piperno, D.R., Pope, K.O., and Jones, J.G. Microfossil evidence for pre-Columbian maize dispersals in the neotropics from San Andrés. Proc Natl Acad Sci USA 104, (2007). 68706875.Google Scholar
Pope, K.O., Pohl, M.E.D., Jones, J.G., Lentz, D.L., von Nagy, C., Vega, F.J., and Quitmyer, I.R. Origin and environmental setting of ancient agriculture in the lowlands of Mesoamerica. Science 292, (2001). 13701373.CrossRefGoogle ScholarPubMed
Reimer, P.J., Baillie, M.G.L., Bard, E., Bayliss, A., Beck, J.W., Bertrand, C., Blackwell, P.G., Buck, C.E., Burr, G., Cutler, K.B., Damon, P.E., Edwards, R.L., Fairbanks, R.G., Friedrich, M., Guilderson, T.P., Hughen, K.A., Kromer, B., McCormac, F.G., Manning, S., Bronk Ramsey, C., Reimer, R.W., Remmele, S., Southon, J.R., Stuiver, M., Talamo, S., Taylor, F.W., Van der Plicht, J., Weyhenmeyer, C.E. Radiocarbon 46, (2004). 10291058.Google Scholar
Rice, D.S. Middle preclassic Maya settlement in the central Maya lowlands. Journal of Field Archaeology 3, (1976). 425445.Google Scholar
Rice, D.S., and Rice, P.M. Population size and population change in the central Peten Lake region, Guatemala. Culbert, T.P., and Rice, D.S. Precolumbian Population History in the Maya Lowlands. (1990). University of New Mexico Press, Albuquerque. 123148.Google Scholar
Roubik, D.W., and Moreno, J.E. Pollen and spores of Barro Colorado Island. Miss Bot Garden 36, (1991). 1270.Google Scholar
Russell, J.M., Talbot, M.R., and Haskell, B.J. Mid-Holocene climate change in Lake Bosumtwi, Ghana. Quaternary Research 60, (2003). 133141.CrossRefGoogle Scholar
Stott, L., Poulsen, C., Lund, S., and Thunell, R. Super ENSO and global climate oscillations at millennial time scales. Science 297, (2002). 222226.Google Scholar
Timmermann, A., Krebs, U., Justino, F., Goosse, H., and Ivanochko, T. Mechanisms for millennial-scale global synchronization during the last glacial period. Paleoceanography 20, 4 (2005). PA4008 Google Scholar
Tedesco, K., and Thunell, R. High resolution tropical climate record for the last 6000 years. Geophysical Research Letters 30, (2003). 1891 http://dx.doi.org/10.1029/2003GL017959 Google Scholar
Vaughan, H.H., Deevey, E.S., and Garrett-Jones, S.E. Pollen stratigraphy of two cores from the Petén Lake district. Pohl, M.D. Prehistoric Lowland Maya Environment and Subsistence Economy. Papers of the Peabody Museum of Archaeology and Ethnology No. 77. (1985). Harvard University, Cambridge. 7389.Google Scholar
Vinson, G.L. Upper Cretaceous and tertiary stratigraphy of Guatemala. Bulletin of the American Association of Petroleum Geologists 46, (1962). 425456.Google Scholar
Wahl, D., Byrne, R., Schreiner, T., and Hansen, R. Holocene vegetation change in the northern Peten and its implications for Maya prehistory. Quaternary Research 65, (2006). 380389.Google Scholar