Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-26T06:25:22.020Z Has data issue: false hasContentIssue false

Climate control on alluvial sediment storage in the northern foreland of the Tatra Mountains since the late Pleistocene

Published online by Cambridge University Press:  19 December 2018

Janusz Olszak*
Affiliation:
Faculty of Geology, Geophysics and Environmental Protection, AGH University of Science and Technology, Mickiewicza 30, 30-059 Kraków, Poland
Józef Kukulak
Affiliation:
Institute of Geography, Pedagogical University of Kraków, Podchorążych 2, 30-084 Kraków, Poland
Helena Alexanderson
Affiliation:
Department of Geology, Lund University, Sölvegatan 12, SE-223 62 Lund, Sweden
*
*Corresponding author at: Faculty of Geology, Geophysics and Environmental Protection, AGH University of Science and Technology, Mickiewicza 30, 30-059 Kraków, Poland. E-mail: [email protected] (J. Olszak).

Abstract

Numerical dating and geomorphic studies on alluvial sediment were undertaken in the uppermost reaches of the Dunajec River catchment in the northern foreland of the Tatra Mountains of Poland. Successions of alluvial deposits in river terraces and alluvial fans are common in this region. In particular, alluvial fans deposited a thick succession of sediment in the intramontane Orawa–Nowy Targ Depression, and terraces are preserved as two cut-and-fill and six strath terraces along the uplifting sections of river courses. We identify several alluviation phases within the alluvial successions that occurred since Marine Oxygen Isotope Stage 6. These sediments show that deposition largely occurred under temperate-climate conditions. This is in spite of a potential strong impact from headwater glaciers under cold-climate conditions. Glacially produced sediments were largely stored within frontal moraines and proglacial floodplains. These glaciogenic sediments were eroded and resedimented during glacier retreat. We therefore conclude that “warm” alluviation is the dominant process forming alluvial successions in this region.

Type
Thematic Set: Fluvial Archives Group (FLAG) Poland
Copyright
Copyright © University of Washington. Published by Cambridge University Press, 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ankjærgaard, C., Jain, M., Thomsen, K.J., Murray, A.S., 2010. Optimising the separation of quartz and feldspar optically stimulated luminescence using pulsed excitation. Radiation Measurements 45, 778785.Google Scholar
Arnold, L.J., Roberts, R.G., 2009. Stochastic modelling of multi-grain equivalent dose (De) distributions: implications for OSL dating of sediment mixtures. Quaternary Geochronology 4, 204230.Google Scholar
Bac-Moszaszwili, M., 1993. Structure of the western termination of the Tatra massif. [In Polish with English summary.] Annales Societatis Geologorum Poloniae 63, 167193.Google Scholar
Banerjee, D., Murray, A.S., Bøtter-Jensen, L., Lang, A., 2001. Equivalent dose estimation using a single aliquot of polymineral fine grains. Radiation Measurements 33, 7394.Google Scholar
Baumgart-Kotarba, M., 1978. Differentiation of tectonic movements in the light of an analysis of Quaternary terraces of the Białka Tatrzańska valley. [In Polish with English summary.] Studia Geomorphologica Carpatho-Balcanica 12, 93110.Google Scholar
Baumgart-Kotarba, M., 1983. Channel and terrace formation due to differential tectonic movements (with the eastern Podhale Basin as example). [In Polish with English summary.] Prace Geograficzne 145, 1133.Google Scholar
Baumgart-Kotarba, M., 1991–1992. The geomorphological evolution of the intramontane Orawa Basin associated with neotectonic movements (Polish Carpathians). [In Polish with English summary.] Studia Geomorphologica Carpatho-Balcanica 25/26, 328.Google Scholar
Baumgart-Kotarba, M., 1996. On origin and age of the Orawa Basin, West Carpathians. Studia Gomorphologica Carpatho-Balcanica 30, 101116.Google Scholar
Bickel, L., Lüthgens, C., Lomax, J., Fiebig, M., 2015. Luminescence dating of glaciofluvial deposits linked to the penultimate glaciation in the Eastern Alps. Quaternary International 357, 110124.Google Scholar
Birkenmajer, K., 1978. Neogene to Early Pleistocene subsidence close to the Pieniny Klippen Belt, Polish Carpathians. Studia Geomorphologica Carpatho-Balcanica 12, 1728.Google Scholar
Birkenmajer, K., Derkacz, M., Lindner, L., Stuchlik, L., 2008. Stanowisko 1: Szaflary Wapiennik – żwiry wodnolodowcowe zlodowacenia Mindel i starsze osady organiczne [Field session, Szaflary: Mindel fluvioglacial gravels and underlying organogenic deposits]. In: Rączkowski, W., Derkacz, M., Przasnyska, J. (Eds.), Plejstocen Tatr i Podhala – zlodowacenia tatrzańskie. XV Konferencja “Stratygrafia Plejstocenu Polski”, Zakopane 1-5 września 2008. Państwowy Instytut Geologiczny, Warsaw, pp. 149154.Google Scholar
Blum, M.D., Törnqvist, T.E., 2000. Fluvial responses to climate and sea‐level change: a review and look forward. Sedimentology 47, 248.Google Scholar
Bridgland, D.R., Westaway, R., 2014. Quaternary fluvial archives and landscape evolution: a global synthesis. Proceedings of the Geologists’ Association 125, 600629.Google Scholar
Bronk Ramsey, C., 2009. Bayesian analysis of radiocarbon dates. Radiocarbon 51, 337360.Google Scholar
Calvet, M., Delmas, M., Gunnell, Y., Braucher, R., Bourlès, D., 2011. Recent advances in research on Quaternary glaciations in the Pyrenees. In: Ehlers, J., Gibbard, P., Hughes, P. (Eds.), Quaternary Glaciations – Extent and Chronology: A Closer Look, Part IV. Developments in Quaternary Science, Vol. 15. Elsevier, Amsterdam, pp. 127139.Google Scholar
Carton, A., Bondesan, A., Fontana, A., Meneghel, M., Miola, A., Mozzi, P., Primon, S., Surian, N., 2009. Geomorphological evolution and sediment transfer in the Piave River system (northeastern Italy) since the Last Glacial Maximum. Géomorphologie: Relief, Processus, Environnement 3, 155174.Google Scholar
Cordier, S., Adamson, K., Delmas, M., Calvet, M., Harmand, D., 2017. Of ice and water: Quaternary fluvial response to glacial forcing. Quaternary Science Reviews 166, 5773.Google Scholar
Cordier, S., Harmand, D., Frechen, M., Beiner, M., 2006. Fluvial system response to middle and upper Pleistocene climate change in the Meurthe and Moselle valleys (eastern Paris basin and Rhenish Massif). Quaternary Science Reviews 25, 14601474.Google Scholar
Dehnert, A., Preusser, F., Kramers, J.D., Akçar, N., Kubik, P.W., Reber, R., Schlüchter, C., 2010. A multi-dating approach applied to proglacial sediments attributed to the Most Extensive Glaciation of the Swiss Alps. Boreas 39, 620632.Google Scholar
Delmas, M., Braucher, R., Gunnell, Y., Guillou, V., Calvet, M., Bourlès, D., ASTER Team, 2015. Constraints on Pleistocene glaciofluvial terrace age and related soil chronosequence features from vertical 10Be profiles in the Ariège River catchment (Pyrenees, France). Global and Planetary Change 132, 3953.Google Scholar
Duller, G.A.T., 2003. Distinguishing quartz and feldspar in single grain luminescence measurements. Radiation Measurements 37, 161165.Google Scholar
Duller, G.A.T., 2008. Single-grain optical dating of Quaternary sediments: why aliquot size matters in luminescence dating. Boreas 37, 589612.Google Scholar
Fontana, A., Mozzi, P., Marchetti, M., 2014. Alluvial fans and megafans along the southern side of the Alps. Sedimentary Geology 301, 150171.Google Scholar
García-Ruiz, J.M., Martí-Bono, C., Peña-Monné, J.L., Sancho, C., Rhodes, E.J., Valero-Garcés, B., Gonzáles-Sampériz, P., Moreno, A., 2013. Glacial and fluvial deposits in the Aragón Valley, central-western Pyrenees: chronology of the Pyrenean late Pleistocene glaciers. Geografiska Annaler: Series A, Physical Geography 95, 1532.Google Scholar
Halicki, B., 1930. Dyluwialne zlodowacenie północnych stoków Tatr. Sprawozdania Państwowego Instytutu Geologicznego 5, 377534.Google Scholar
Huntley, D.J., Godfrey-Smith, D.I., Thewalt, M.L.W., 1985. Optical dating of sediments. Nature 313, 105107.Google Scholar
Kenworthy, M.K., Rittenour, T.M., Pierce, J.L., Sutfin, N.A., Sharp, W.D., 2014. Luminescence dating without sand lenses: an application of OSL to coarse-grained alluvial fan deposits of the Lost River Range, Idaho, USA. Quaternary Geochronology 23, 925.Google Scholar
Klimaszewski, M., 1967. Polskie Karpaty Zachodnie w okresie czwartorzędowym. In: Galon, R., Dylik, J. (Eds.), Czwartorzęd Polski. Państwowe Wydawnietwo Naukowe, Warsaw, pp. 431497.Google Scholar
Krąpiec, M., Walanus, A., 2011. Application of the triple-photomultiplier liquid spectrometer Hidex 300 SL in radiocarbon dating. Radiocarbon 53, 543550.Google Scholar
Kukulak, J., 1993. Przejawy aktywności ruchów pionowych w rzeźbie zachodniego Podhala. Folia Quaternaria 64, 151164.Google Scholar
Lewis, C.J., McDonald, E.V., Sancho, C., Peña, J.L., Rhodes, E.J., 2009. Climatic implications of correlated Upper Pleistocene and fluvial deposits on the Cinca and Gállego Rivers (NE Spain) based on OSL dating and soil stratigraphy. Global and Planetary Change 67, 141152.Google Scholar
Lindner, L., Dzierżek, J., Marciniak, B., Nitychoruk, J., 2003. Outline of Quaternary glaciations in the Tatra Mts.: their development, age and limits. Geological Quarterly 47, 269280.Google Scholar
Lindner, L., Nitychoruk, J., Butrym, J., 1993. Liczba i wiek zlodowaceń tatrzańskich w świetle datowań termoluminescencyjnych osadów wodnolodowcowych w dorzeczu Białego Dunajca. Przegląd Geologiczny 41, 1021.Google Scholar
Mather, A.E., Stokes, M., Whitfield, E., 2017. River terraces and alluvial fans: the case for integrated Quaternary fluvial archive. Quaternary Science Reviews 166, 7490.Google Scholar
Murray, A.S., Marten, R., Johnson, A., Martin, P., 1987. Analysis for naturally occurring radionuclides at environmental concentrations by gamma spectrometry. Journal of Radioanalytical and Nuclear Chemistry Articles 115, 263288.Google Scholar
Murray, A.S., Wintle, A.G., 2000. Luminescence dating of quartz using an improved single-aliquot regenerative-dose protocol. Radiation Measurements 32, 5773.Google Scholar
Murray, A.S., Wintle, A.G., 2003. The single aliquot regenerative dose protocol: potential for improvements in reliability. Radiation Measurements 37, 377381.Google Scholar
Olszak, J., 2017. Climatically controlled terrace staircases in uplifting mountainous areas. Global and Planetary Change 156, 1323.Google Scholar
Olszak, J., Adamiec, G., 2016. OSL-based chronostratigraphy of river terraces in mountainous areas, Dunajec basin, West Carpathians: a revision of the climatostratigraphical approach. Boreas 45, 483493.Google Scholar
Olszak, J., Kukulak, J., Alexanderson, H., 2016. Revision of river terrace geochronology in the Orawa-Nowy Targ Depression, south Poland: insights from OSL dating. Proceedings of the Geologists’ Association 127, 595605.Google Scholar
Pomianowski, P., 2003. Tectonics of the Orava-Nowy Targ Basin—results of the combined analyses of the gravity and geoelectrical data. [In Polish with English summary.] Przegląd Geologiczny 51, 498506.Google Scholar
Prescott, J.R., Hutton, J.T., 1994. Cosmic ray contributions to dose rates for luminescence and ESR dating: large depths and long-term time variations. Radiation Measurements 23, 497500.Google Scholar
Preusser, F., Graf, H.R., Keller, O., Krayss, E., Schluchter, C., 2011. Quaternary glaciation history of northern Switzerland. Quaternary Science Journal 60, 282305.Google Scholar
Reimer, P.J., Bard, E., Bayliss, A., Beck, J.W., Blackwell, P.G., Bronk Ramsey, C., Buck, C.E., et al., 2013. Intcal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55, 18691887.Google Scholar
Romer, E., 1929. Tatrzańska epoka lodowa. Prace Geograficzne 11, 1186.Google Scholar
Skripkin, V.V., Kovalyukh, N.N., 1998. Recent development in the procedures used the SSCER laboratory for the routine preparation of lithium carbide. Radiocarbon 40, 211214.Google Scholar
Stange, K.M., van Balen, R., Carcaillet, J., Vandenberghe, J., 2013. Terraces staircase development in the Southern Pyrenees Foreland: inferences from 10Be terrace exposure ages at the Segre River. Global and Planetary Change 101, 97112.Google Scholar
Starkel, L., 2003. Climatically controlled terraces in uplifting mountain areas. Quaternary Science Reviews 22, 21892198.Google Scholar
Stokes, M., Mather, A.E., Belfoul, M., Faik, F., Bouzid, S., Geach, M.R., Cunha, P.P., Boulton, S.J., Thiel, C., 2017. Controls on dryland mountain landscape development along the NW Saharan desert margin: insights from Quaternary river terrace sequences (Dadès River, south-central High Atlas, Morocco). Quaternary Science Reviews 166, 363379.Google Scholar
Tokarski, A.K., Márton, E., Świerczewska, A., Fheed, A., Zasadni, J., Kukulak, J., 2016. Neotectonic rotations in the Orava-Nowy Targ Intramontane Basin (Western Carpathians): an integrated palaeomagnetic and fractured clasts study. Tectonophysics 685, 3543.Google Scholar
Wallinga, J., 2002. On the detection of OSL age overestimation using single-aliquot techniques. Geochronometria 21, 1726.Google Scholar
Watycha, L., 1973. Utwory czwartorzędowe w otworze wiertniczym Wróblówka na Podhalu. Kwartalnik Geologiczny 17, 335347.Google Scholar
Watycha, L., 1976. Objaśnienia do Szczegółowej Mapy Geologicznej Polski 1:50 000, ark. Nowy Targ (1049). Wydawnictwa Geologiczne, Warsaw.Google Scholar
Winsemann, J., Lang, J., Roskosch, J., Polom, U., Böhner, U., Brandes, C., Glotzbach, C., Frechen, M., 2015. Terrace styles and timing of terrace formation in the Weser and Leine valleys, northern Germany: response of fluvial system to climate change and glaciation. Quaternary Science Reviews 123, 3157.Google Scholar
Zasadni, J., Kłapyta, P., 2014. The Tatra Mountains during the Last Glacial Maximum. Journal of Maps 10, 440456.Google Scholar